Last updated: 2024-03-20

Checks: 6 1

Knit directory: survival-susie/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20230201) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/mstephens/yunqiyang/surv-susie/survival-susie/code/pip.R code/pip.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 7443a94. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/

Unstaged changes:
    Deleted:    analysis/calibration_large_sample.Rmd
    Modified:   analysis/coxph_na.Rmd
    Modified:   code/pip.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/compare_pip_500iter.Rmd) and HTML (docs/compare_pip_500iter.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 7443a94 yunqi yang 2024-03-20 wflow_publish("analysis/compare_pip_500iter.Rmd")
html 40f994b yunqi yang 2024-03-20 Build site.
html 1e0f766 yunqi yang 2024-03-20 Build site.
Rmd b887d01 yunqi yang 2024-03-20 wflow_publish("analysis/compare_pip_500iter.Rmd")
html 79e58ec yunqi yang 2024-03-20 Build site.
Rmd 39635bf yunqi yang 2024-03-20 wflow_publish("analysis/compare_pip_500iter.Rmd")
html 87ed6c5 yunqi yang 2024-03-20 Build site.
html a92d121 yunqi yang 2024-03-19 Build site.
Rmd c141d2c yunqi yang 2024-03-19 wflow_publish("analysis/compare_pip_500iter.Rmd")
html fccf83b yunqi yang 2024-03-19 Build site.
Rmd 4bd9645 yunqi yang 2024-03-19 wflow_publish("analysis/compare_pip_500iter.Rmd")
html 375d706 yunqi yang 2024-03-19 Build site.
Rmd 912684e yunqi yang 2024-03-19 wflow_publish("analysis/compare_pip_500iter.Rmd")
html 30e9f69 yunqi yang 2024-03-18 Build site.
Rmd 3f7bcad yunqi yang 2024-03-18 wflow_publish("analysis/compare_pip_500iter.Rmd")

Description:

Simulation results based on real genotype data from GTEx. I took the SNPs for a certain gene, Thyroid.ENSG00000132855. Therefore, sample size \(n=584\), and I choose variable number \(p=1000\).

Steps for simulating survival data:

  1. Select a random point on the genome, indx_start. Then the predictors are from [indx_start:(indx_start + p -1)].

  2. Two correlation types: real correlation and independent. In independent, I simply permute each variable values randomly.

  3. Effect size \(b\sim N(0,1)\).

  4. Simulate survival time using exponential survival model.

Fitting:

All the methods were set to default number of iterations.

  1. susie & susie rss: \(L=5\) and estimate prior covariance. niter = 100.

  2. bvsnlp: niter = 30.

  3. survival.svb: niter = 1000

  4. r2b: 1e6

source("/project2/mstephens/yunqiyang/surv-susie/survival-susie/code/pip.R")
susie = readRDS("/project2/mstephens/yunqiyang/surv-susie/sim2024/sim_default_iter/susie.rds")
svb = readRDS("/project2/mstephens/yunqiyang/surv-susie/sim2024/sim_default_iter/svb.rds")
bvsnlp = readRDS("/project2/mstephens/yunqiyang/surv-susie/sim2024/sim_default_iter/bvsnlp.rds")
r2b = readRDS("/project2/mstephens/yunqiyang/surv-susie/sim2024/sim_default_iter/r2b.rds")
rss = readRDS("/project2/mstephens/yunqiyang/surv-susie/sim2024/sim_default_iter/rss.rds")
censor_lvls = unique(susie$simulate.censor_lvl)

1. Use the real correlation of SNPs

par(mfrow = c(5,4))
for (i in 1:length(censor_lvls)){
  indx = which(susie$simulate.cor_type == "real" & susie$simulate.censor_lvl == censor_lvls[i])
  pip.susie = unlist(lapply(indx, function(x) susie$susie.pip[[x]]))
  pip.svb = unlist(lapply(indx, function(x) svb$svb.pip[[x]]))
  pip.bvsnlp = unlist(lapply(indx, function(x) bvsnlp$bvsnlp.pip[[x]]))
  pip.r2b = unlist(lapply(indx, function(x) r2b$r2b.pip[[x]]))
  pip.rss = unlist(lapply(indx, function(x) rss$rss.pip[[x]]))
  
  is_effect = unlist(lapply(indx, function(x) susie$simulate.is_effect[[x]]))

  res.pip = compare_pip(pip.susie, pip.svb, is_effect)
  plot_pip(res.pip, labs = c("susie", "survival.svb"), main = paste0("censor=",censor_lvls[i]))
  abline(a = 0, b = 1, lty = 2, col = "blue")
  
  res.pip = compare_pip(pip.susie, pip.bvsnlp, is_effect)
  plot_pip(res.pip, labs = c("susie", "bvsnlp"), main = paste0("censor=",censor_lvls[i]))
  abline(a = 0, b = 1, lty = 2, col = "blue")
  
  res.pip = compare_pip(pip.susie, pip.r2b, is_effect)
  plot_pip(res.pip, labs = c("susie", "r2b"), main = paste0("censor=",censor_lvls[i]))
  abline(a = 0, b = 1, lty = 2, col = "blue")
  
  res.pip = compare_pip(pip.susie, pip.rss, is_effect)
  plot_pip(res.pip, labs = c("susie", "rss"), main = paste0("censor=",censor_lvls[i]))
  abline(a = 0, b = 1, lty = 2, col = "blue")
  
}

Version Author Date
375d706 yunqi yang 2024-03-19
30e9f69 yunqi yang 2024-03-18

Note: ranges with less than 10 observations are removed…

par(mfrow = c(2,3))
indx = which(bvsnlp$simulate.cor_type == "real")
is_effect = unlist(lapply(indx, function(x) bvsnlp$simulate.is_effect[[x]]))
pip.susie = unlist(lapply(indx, function(x) susie$susie.pip[[x]]))
pip.survsvb = unlist(lapply(indx, function(x) svb$svb.pip[[x]]))
pip.bvsnlp = unlist(lapply(indx, function(x) bvsnlp$bvsnlp.pip[[x]]))
pip.rss = unlist(lapply(indx, function(x) rss$rss.pip[[x]]))
pip.r2b = unlist(lapply(indx, function(x) r2b$r2b.pip[[x]]))
  
# Calibration plot for pip.susie
calibration.susie = pip_calibration(pip.susie, is_effect)
plot_calibration(calibration.susie, main = "susie")
  
# Calibration plot for pip.svb
calibration.survsvb = pip_calibration(pip.survsvb, is_effect)
plot_calibration(calibration.survsvb, main = "svb")
  
# Calibration plot for pip.bvsnlp
calibration.bvsnlp = pip_calibration(pip.bvsnlp, is_effect)
plot_calibration(calibration.bvsnlp, main = "bvsnlp")
  
# Calibration plot for pip.rss
calibration.rss = pip_calibration(pip.rss, is_effect)
plot_calibration(calibration.rss, main = "rss")
  
# Calibration plot for pip.r2b
calibration.r2b = pip_calibration(pip.r2b, is_effect)
plot_calibration(calibration.r2b, main = "r2b")

Version Author Date
40f994b yunqi yang 2024-03-20
1e0f766 yunqi yang 2024-03-20
79e58ec yunqi yang 2024-03-20
a92d121 yunqi yang 2024-03-19
fccf83b yunqi yang 2024-03-19
375d706 yunqi yang 2024-03-19
30e9f69 yunqi yang 2024-03-18

2. Independent SNPs

par(mfrow = c(5,4))
for (i in 1:length(censor_lvls)){
  indx = which(susie$simulate.cor_type == "independent" & susie$simulate.censor_lvl == censor_lvls[i])
  pip.susie = unlist(lapply(indx, function(x) susie$susie.pip[[x]]))
  pip.svb = unlist(lapply(indx, function(x) svb$svb.pip[[x]]))
  pip.bvsnlp = unlist(lapply(indx, function(x) bvsnlp$bvsnlp.pip[[x]]))
  pip.r2b = unlist(lapply(indx, function(x) r2b$r2b.pip[[x]]))
  pip.rss = unlist(lapply(indx, function(x) rss$rss.pip[[x]]))
  
  is_effect = unlist(lapply(indx, function(x) susie$simulate.is_effect[[x]]))


  res.pip = compare_pip(pip.susie, pip.svb, is_effect)
  plot_pip(res.pip, labs = c("susie", "survival.svb"), main = paste0("censor=",censor_lvls[i]))
  abline(a = 0, b = 1, lty = 2, col = "blue")
  
  res.pip = compare_pip(pip.susie, pip.bvsnlp, is_effect)
  plot_pip(res.pip, labs = c("susie", "bvsnlp"), main = paste0("censor=",censor_lvls[i]))
  abline(a = 0, b = 1, lty = 2, col = "blue")
  
  res.pip = compare_pip(pip.susie, pip.r2b, is_effect)
  plot_pip(res.pip, labs = c("susie", "r2b"), main = paste0("censor=",censor_lvls[i]))
  abline(a = 0, b = 1, lty = 2, col = "blue")
  
  res.pip = compare_pip(pip.susie, pip.rss, is_effect)
  plot_pip(res.pip, labs = c("susie", "rss"), main = paste0("censor=",censor_lvls[i]))
  abline(a = 0, b = 1, lty = 2, col = "blue")
  
}

Version Author Date
375d706 yunqi yang 2024-03-19
30e9f69 yunqi yang 2024-03-18
par(mfrow = c(2,3))
indx = which(bvsnlp$simulate.cor_type == "independent")
is_effect = unlist(lapply(indx, function(x) bvsnlp$simulate.is_effect[[x]]))
pip.susie = unlist(lapply(indx, function(x) susie$susie.pip[[x]]))
pip.survsvb = unlist(lapply(indx, function(x) svb$svb.pip[[x]]))
pip.bvsnlp = unlist(lapply(indx, function(x) bvsnlp$bvsnlp.pip[[x]]))
pip.rss = unlist(lapply(indx, function(x) rss$rss.pip[[x]]))
pip.r2b = unlist(lapply(indx, function(x) r2b$r2b.pip[[x]]))
  
# Calibration plot for pip.susie
calibration.susie = pip_calibration(pip.susie, is_effect)
plot_calibration(calibration.susie, main = "susie")
  
# Calibration plot for pip.svb
calibration.survsvb = pip_calibration(pip.survsvb, is_effect)
plot_calibration(calibration.survsvb, main = "svb")
  
# Calibration plot for pip.bvsnlp
calibration.bvsnlp = pip_calibration(pip.bvsnlp, is_effect)
plot_calibration(calibration.bvsnlp, main = "bvsnlp")
  
# Calibration plot for pip.rss
calibration.rss = pip_calibration(pip.rss, is_effect)
plot_calibration(calibration.rss, main = "rss")
  
# Calibration plot for pip.r2b
calibration.r2b = pip_calibration(pip.r2b, is_effect)
plot_calibration(calibration.r2b, main = "r2b")

Version Author Date
40f994b yunqi yang 2024-03-20
1e0f766 yunqi yang 2024-03-20
79e58ec yunqi yang 2024-03-20
a92d121 yunqi yang 2024-03-19
fccf83b yunqi yang 2024-03-19
375d706 yunqi yang 2024-03-19
30e9f69 yunqi yang 2024-03-18

sessionInfo()
# R version 4.2.0 (2022-04-22)
# Platform: x86_64-pc-linux-gnu (64-bit)
# Running under: CentOS Linux 7 (Core)
# 
# Matrix products: default
# BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so
# 
# locale:
#  [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C         LC_TIME=C           
#  [4] LC_COLLATE=C         LC_MONETARY=C        LC_MESSAGES=C       
#  [7] LC_PAPER=C           LC_NAME=C            LC_ADDRESS=C        
# [10] LC_TELEPHONE=C       LC_MEASUREMENT=C     LC_IDENTIFICATION=C 
# 
# attached base packages:
# [1] stats     graphics  grDevices utils     datasets  methods   base     
# 
# other attached packages:
# [1] workflowr_1.7.0
# 
# loaded via a namespace (and not attached):
#  [1] Rcpp_1.0.8.3     highr_0.9        bslib_0.3.1      compiler_4.2.0  
#  [5] pillar_1.7.0     later_1.3.0      git2r_0.30.1     jquerylib_0.1.4 
#  [9] tools_4.2.0      getPass_0.2-2    digest_0.6.29    jsonlite_1.8.0  
# [13] evaluate_0.15    tibble_3.1.7     lifecycle_1.0.1  pkgconfig_2.0.3 
# [17] rlang_1.0.2      cli_3.3.0        rstudioapi_0.13  yaml_2.3.5      
# [21] xfun_0.30        fastmap_1.1.0    httr_1.4.3       stringr_1.4.0   
# [25] knitr_1.39       sass_0.4.1       fs_1.5.2         vctrs_0.4.1     
# [29] rprojroot_2.0.3  glue_1.6.2       R6_2.5.1         processx_3.8.0  
# [33] fansi_1.0.3      rmarkdown_2.14   callr_3.7.3      magrittr_2.0.3  
# [37] whisker_0.4      ps_1.7.0         promises_1.2.0.1 htmltools_0.5.2 
# [41] ellipsis_0.3.2   httpuv_1.6.5     utf8_1.2.2       stringi_1.7.6   
# [45] crayon_1.5.1