Last updated: 2024-03-25

Checks: 6 1

Knit directory: survival-susie/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20230201) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/mstephens/yunqiyang/surv-susie/survival-susie/code/post_summary.R code/post_summary.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 6b70998. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Unstaged changes:
    Deleted:    analysis/calibration_large_sample.Rmd
    Modified:   analysis/coxph_na.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/compare_method_large_sample.Rmd) and HTML (docs/compare_method_large_sample.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 6b70998 yunqi yang 2024-03-25 wflow_publish("analysis/compare_method_large_sample.Rmd")
html fbcb3ef yunqi yang 2024-03-25 Build site.
Rmd 333eade yunqi yang 2024-03-25 wflow_publish("analysis/compare_method_large_sample.Rmd")
html ef9d558 yunqi yang 2024-02-11 Build site.
Rmd 38dcd15 yunqi yang 2024-02-11 wflow_publish("analysis/compare_method_large_sample.Rmd")
html ed5188d yunqi yang 2024-01-30 Build site.
Rmd c084cce yunqi yang 2024-01-30 wflow_publish("analysis/compare_method_large_sample.Rmd")
html b70bfac yunqi yang 2024-01-30 Build site.
Rmd 5a62ce3 yunqi yang 2024-01-30 wflow_publish("analysis/compare_method_large_sample.Rmd")
html fa83bf3 yunqi yang 2024-01-29 Build site.
Rmd 6130e84 yunqi yang 2024-01-29 wflow_publish("analysis/compare_method_large_sample.Rmd")
html 1c71368 yunqi yang 2024-01-29 Build site.
Rmd 33ea019 yunqi yang 2024-01-29 wflow_publish("analysis/compare_method_large_sample.Rmd")

Description:

Comparing power vs. FDR across 4 methods. I vary the threshold for claiming effect variables based on marginal PIP value.

Data details:

  1. \(n=50000\) and \(p=1000\).

  2. SNPs with minor allele frequency < 1% were removed.

Fitting details:

  1. SuSIE with laplace BF.

  2. See https://yunqiyang0215.github.io/survival-susie/pip_comparison_large_sample.html

source("/project2/mstephens/yunqiyang/surv-susie/survival-susie/code/post_summary.R")
susie = readRDS("/project2/mstephens/yunqiyang/surv-susie/dsc202401/susie.rds")
survsvb = readRDS("/project2/mstephens/yunqiyang/surv-susie/dsc202401/survsvb.rds")
bvsnlp = readRDS("/project2/mstephens/yunqiyang/surv-susie/dsc202401/bvsnlp.rds")
r2b = readRDS("/project2/mstephens/yunqiyang/surv-susie/dsc202401/r2b.rds")
rss = readRDS("/project2/mstephens/yunqiyang/surv-susie/dsc202401/susie_rss.rds")
t95 = 951

1. Results using real correlation structure from data

par(mfrow = c(2,3), cex.axis = 1.5)
censor_lvl = c(0, 0.2, 0.4, 0.6, 0.8, 0.99)
for (i in 1:length(censor_lvl)){
  indx = which(susie$simulate.cor_type == "real" & susie$simulate.censor_lvl == censor_lvl[i])
  pip.susie = unlist(lapply(indx, function(x) susie$susie.pip[[x]]))
  pip.survsvb = unlist(lapply(indx, function(x) survsvb$svb.pip[[x]]))
  pip.bvsnlp = unlist(lapply(indx, function(x) bvsnlp$bvsnlp.pip[[x]]))
  pip.r2b = unlist(lapply(indx, function(x) r2b$r2b.pip[[x]]))
  pip.rss = unlist(lapply(indx, function(x) rss$susie_rss.pip[[x]]))
  is_effect = unlist(lapply(indx, function(x) susie$simulate.is_effect[[x]]))
  
  ts = seq(from = 0, to = 1, by = 0.001)
  res.susie = calculate_tpr_vs_fdr(pip.susie, is_effect, ts)
  res.svb = calculate_tpr_vs_fdr(pip.survsvb, is_effect, ts)
  res.bvsnlp = calculate_tpr_vs_fdr(pip.bvsnlp, is_effect, ts)
  res.rss = calculate_tpr_vs_fdr(pip.rss, is_effect, ts)
  res.r2b = calculate_tpr_vs_fdr(pip.r2b, is_effect, ts)
  
  plot(res.susie[,2], res.susie[,1], type = "l", xlim = c(0,1), ylim = c(0, 1), xlab = "FDR", ylab = "Power",
       main = paste0("Real correlation, effect 0-3", ",censor=", censor_lvl[i]))
  lines(res.svb[,2], res.svb[,1], type = "l", col = 2)
  lines(res.bvsnlp[,2], res.bvsnlp[,1], type = "l", col = 3)
  lines(res.rss[,2], res.rss[,1], type = "l", col = 4)
  lines(res.r2b[,2], res.r2b[,1], type = "l", col = 5)
  
  points(res.susie[t95,2], res.susie[t95, 1])
  points(res.svb[t95,2], res.svb[t95, 1])
  points(res.bvsnlp[t95,2], res.bvsnlp[t95, 1])
  points(res.rss[t95,2], res.rss[t95, 1])
  points(res.r2b[t95,2], res.r2b[t95, 1])
  
  legend("topleft", legend = c("susie", "survival.svb", "bvsnlp", "r2b"), col = c(1,2,3, 4), lty = 1)
}

Version Author Date
fbcb3ef yunqi yang 2024-03-25
ef9d558 yunqi yang 2024-02-11
b70bfac yunqi yang 2024-01-30
1c71368 yunqi yang 2024-01-29

The dots indicate PIP threshold = 0.95

2. Results using independent X, with data from null model.

par(mfrow = c(2,3), cex.axis = 1.5)
censor_lvl = c(0, 0.2, 0.4, 0.6, 0.8, 0.99)
for (i in 1:length(censor_lvl)){
  indx = which(susie$simulate.cor_type == "independent" & susie$simulate.censor_lvl == censor_lvl[i])
  pip.susie = unlist(lapply(indx, function(x) susie$susie.pip[[x]]))
  pip.survsvb = unlist(lapply(indx, function(x) survsvb$svb.pip[[x]]))
  pip.bvsnlp = unlist(lapply(indx, function(x) bvsnlp$bvsnlp.pip[[x]]))
  pip.r2b = unlist(lapply(indx, function(x) r2b$r2b.pip[[x]]))
  pip.rss = unlist(lapply(indx, function(x) rss$susie_rss.pip[[x]]))
  is_effect = unlist(lapply(indx, function(x) susie$simulate.is_effect[[x]]))
  
  ts = seq(from = 0, to = 1, by = 0.001)
  res.susie = calculate_tpr_vs_fdr(pip.susie, is_effect, ts)
  res.svb = calculate_tpr_vs_fdr(pip.survsvb, is_effect, ts)
  res.bvsnlp = calculate_tpr_vs_fdr(pip.bvsnlp, is_effect, ts)
  res.rss = calculate_tpr_vs_fdr(pip.rss, is_effect, ts)
  res.r2b = calculate_tpr_vs_fdr(pip.r2b, is_effect, ts)
  
  plot(res.susie[,2], res.susie[,1], type = "l", xlim = c(0,1), ylim = c(0, 1), xlab = "FDR", ylab = "Power",
       main = paste0("Real correlation, effect 0-3", ",censor=", censor_lvl[i]))
  lines(res.svb[,2], res.svb[,1], type = "l", col = 2)
  lines(res.bvsnlp[,2], res.bvsnlp[,1], type = "l", col = 3)
  lines(res.rss[,2], res.rss[,1], type = "l", col = 4)
  lines(res.r2b[,2], res.r2b[,1], type = "l", col = 5)
  
  points(res.susie[t95,2], res.susie[t95, 1])
  points(res.svb[t95,2], res.svb[t95, 1])
  points(res.bvsnlp[t95,2], res.bvsnlp[t95, 1])
  points(res.rss[t95,2], res.rss[t95, 1])
  points(res.r2b[t95,2], res.r2b[t95, 1])
  
  legend("bottomright", legend = c("susie", "survival.svb", "bvsnlp", "r2b"), col = c(1,2,3, 4), lty = 1)
}

Version Author Date
fbcb3ef yunqi yang 2024-03-25
ef9d558 yunqi yang 2024-02-11
ed5188d yunqi yang 2024-01-30
b70bfac yunqi yang 2024-01-30
1c71368 yunqi yang 2024-01-29

The dots indicate PIP threshold = 0.95.

3. Time comparison

res = readRDS("/project2/mstephens/yunqiyang/surv-susie/dsc202401/time_comparison.rds")

t = unlist(lapply(1:length(res), function(i) mean(res[[i]][,5], , na.rm = TRUE)))
names(t) = c("susie", "bvsnlp", "susie_rss", "svb", "r2b")
print(t)
#      susie     bvsnlp  susie_rss        svb        r2b 
#  7982.7163  3727.9983   239.3761  2577.9607 11610.1981

sessionInfo()
# R version 4.2.0 (2022-04-22)
# Platform: x86_64-pc-linux-gnu (64-bit)
# Running under: CentOS Linux 7 (Core)
# 
# Matrix products: default
# BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so
# 
# locale:
#  [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C         LC_TIME=C           
#  [4] LC_COLLATE=C         LC_MONETARY=C        LC_MESSAGES=C       
#  [7] LC_PAPER=C           LC_NAME=C            LC_ADDRESS=C        
# [10] LC_TELEPHONE=C       LC_MEASUREMENT=C     LC_IDENTIFICATION=C 
# 
# attached base packages:
# [1] stats     graphics  grDevices utils     datasets  methods   base     
# 
# other attached packages:
# [1] workflowr_1.7.0
# 
# loaded via a namespace (and not attached):
#  [1] Rcpp_1.0.8.3     highr_0.9        bslib_0.3.1      compiler_4.2.0  
#  [5] pillar_1.7.0     later_1.3.0      git2r_0.30.1     jquerylib_0.1.4 
#  [9] tools_4.2.0      getPass_0.2-2    digest_0.6.29    jsonlite_1.8.0  
# [13] evaluate_0.15    tibble_3.1.7     lifecycle_1.0.1  pkgconfig_2.0.3 
# [17] rlang_1.0.2      cli_3.3.0        rstudioapi_0.13  yaml_2.3.5      
# [21] xfun_0.30        fastmap_1.1.0    httr_1.4.3       stringr_1.4.0   
# [25] knitr_1.39       sass_0.4.1       fs_1.5.2         vctrs_0.4.1     
# [29] rprojroot_2.0.3  glue_1.6.2       R6_2.5.1         processx_3.8.0  
# [33] fansi_1.0.3      rmarkdown_2.14   callr_3.7.3      magrittr_2.0.3  
# [37] whisker_0.4      ps_1.7.0         promises_1.2.0.1 htmltools_0.5.2 
# [41] ellipsis_0.3.2   httpuv_1.6.5     utf8_1.2.2       stringi_1.7.6   
# [45] crayon_1.5.1