Last updated: 2024-11-20

Checks: 6 1

Knit directory: survival-susie/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20230201) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/mstephens/yunqiyang/surv-susie/survival-susie/output/bf_comparison_b_1_n_500000.pdf output/bf_comparison_b_1_n_500000.pdf
/project2/mstephens/yunqiyang/surv-susie/survival-susie/output/bf_comparison_b_0.1_n_500000.pdf output/bf_comparison_b_0.1_n_500000.pdf
/project2/mstephens/yunqiyang/surv-susie/survival-susie/output/bf_comparison_b_0.01_n_500000.pdf output/bf_comparison_b_0.01_n_500000.pdf

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 6f59843. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  analysis/time_gh.Rmd
    Untracked:  output/bf_comparison_b_1_n_500000.pdf

Unstaged changes:
    Modified:   analysis/bf_comparison.Rmd
    Deleted:    analysis/calibration_large_sample.Rmd
    Modified:   analysis/check_bf.Rmd
    Modified:   analysis/coxph_na.Rmd
    Modified:   analysis/pip_default_iter_gtex.Rmd
    Modified:   code/pip.R
    Modified:   output/bf_comparison.pdf
    Modified:   output/bf_comparison_b_0.01_n_500000.pdf
    Modified:   output/bf_comparison_b_0.1_n_500000.pdf
    Modified:   output/bf_defense.pdf
    Modified:   output/bf_different_bhat_large_n.pdf
    Modified:   output/bf_different_bhat_small_n.pdf
    Modified:   output/bf_different_n_large_b.pdf
    Deleted:    output/pip_combined.Rmd
    Modified:   output/pip_gtex.pdf
    Modified:   output/pip_ukb.pdf

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/bf_comparison2.Rmd) and HTML (docs/bf_comparison2.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 6f59843 yunqi yang 2024-11-20 wflow_publish("analysis/bf_comparison2.Rmd")
html 410628d yunqi yang 2024-10-11 Build site.
Rmd 04c2e21 yunqi yang 2024-10-11 wflow_publish("analysis/bf_comparison2.Rmd")
html c219afc yunqi yang 2024-10-11 Build site.
Rmd 19a7ce3 yunqi yang 2024-10-11 wflow_publish("analysis/bf_comparison2.Rmd")
html 8a1ddda yunqi yang 2024-10-07 Build site.
Rmd 08f38c4 yunqi yang 2024-10-07 wflow_publish("analysis/bf_comparison2.Rmd")
html 6445624 yunqi yang 2024-09-18 Build site.
Rmd a68068a yunqi yang 2024-09-18 wflow_publish("analysis/bf_comparison2.Rmd")
html 5b1f3bf yunqi yang 2024-09-15 Build site.
Rmd cf8b1c2 yunqi yang 2024-09-15 wflow_publish("analysis/bf_comparison2.Rmd")
Rmd 9d07e13 yunqi yang 2024-09-04 update bf result
html 546c2bf yunqi yang 2024-08-26 Build site.
Rmd f39a9fa yunqi yang 2024-08-26 wflow_publish("analysis/bf_comparison2.Rmd")
html 8e45b7b yunqi yang 2024-08-25 Build site.
Rmd 540034b yunqi yang 2024-08-25 wflow_publish("analysis/bf_comparison2.Rmd")
html a066bd5 yunqi yang 2024-08-22 Build site.
Rmd ff1c9e9 yunqi yang 2024-08-22 wflow_publish("analysis/bf_comparison2.Rmd")
html 0a749f7 yunqi yang 2024-08-20 Build site.
Rmd f2b94f6 yunqi yang 2024-08-20 wflow_publish("analysis/bf_comparison2.Rmd")
html 0c00f19 yunqi yang 2024-07-30 Build site.
Rmd d57da75 yunqi yang 2024-07-30 wflow_publish("analysis/bf_comparison2.Rmd")
html 46926b2 yunqi yang 2024-07-30 Build site.
Rmd 5845f48 yunqi yang 2024-07-30 wflow_publish("analysis/bf_comparison2.Rmd")
html 3ec6bec yunqi yang 2024-07-30 Build site.
Rmd 1dc809b yunqi yang 2024-07-30 wflow_publish("analysis/bf_comparison2.Rmd")
html 09175d7 yunqi yang 2024-07-30 Build site.
Rmd f02670e yunqi yang 2024-07-30 wflow_publish("analysis/bf_comparison2.Rmd")
html d88a721 yunqi yang 2024-07-30 Build site.
Rmd 3d8ee7d yunqi yang 2024-07-30 wflow_publish("analysis/bf_comparison2.Rmd")
html e967833 yunqi yang 2024-07-30 Build site.
Rmd 4f6011c yunqi yang 2024-07-30 wflow_publish("analysis/bf_comparison2.Rmd")
html 446abfc yunqi yang 2024-07-30 Build site.
Rmd 648758a yunqi yang 2024-07-30 wflow_publish("analysis/bf_comparison2.Rmd")
html 9a0ac2e yunqi yang 2024-07-25 Build site.
Rmd c49d023 yunqi yang 2024-07-25 wflow_publish("analysis/bf_comparison2.Rmd")
html a052a70 yunqi yang 2024-07-25 Build site.
Rmd 9e875e9 yunqi yang 2024-07-25 wflow_publish("analysis/bf_comparison2.Rmd")
html 0620b97 yunqi yang 2024-07-15 Build site.
Rmd 25eae82 yunqi yang 2024-07-15 wflow_publish("analysis/bf_comparison2.Rmd")

Description:

Compare different types of Bayes factor under different levels of censoring, minor allele frequency, effect size and sample size.

  1. censoring = 0.00, 0.20, 0.40, 0.60, 0.80, 0.99

  2. MAF = 0.001, 0.01, 0.1

  3. n = 5000, 50000, 500000

  4. b1 = -1, -0.1, -0.01, 0.01, 0.1, 1

  5. BFs:

  1. Numerical BF using Gaussian quadrature, our gold standard. https://yunqiyang0215.github.io/survival-susie/gauss_quad.html

  2. Laplace-MLE BF

  3. Wakefeld BF

  4. Wakefeld BF with zscore from coxph() corrected by saddle point approximation. https://yunqiyang0215.github.io/survival-susie/SPAcox.html

library(latex2exp)

res = readRDS("/project2/mstephens/yunqiyang/surv-susie/sim202406/bf_comparison0712/res_bf.rds")
dat_list = lapply(1:length(res$DSC), function(x) res$compute_bf.result[[x]])
dat = do.call(rbind, dat_list)
dat2 = cbind(res$simulate.censor_lvl, res$simulate.allele_freq, res$simulate.n, 
             res$simulate.b1, dat)
colnames(dat2)[1:4] = c("censor_lvl", "allele_freq", "n", "b1")
dat2 = as.data.frame(dat2)

censor_lvl = unique(res$simulate.censor_lvl)
af = unique(res$simulate.allele_freq)
print(censor_lvl)
[1] 0.00 0.20 0.40 0.60 0.80 0.99
print(af)
[1] 0.001 0.010 0.100 0.500

1.1 Plot BF difference

par(mfrow = c(6,4))
for (i in 1:length(censor_lvl)){
  for (j in 1:length(af)){
    indx = which(dat2$censor_lvl == censor_lvl[i] & dat2$allele_freq == af[j] & dat2$b1 == 1)
    diff1 = dat2$lbf.numerical - dat2$lbf.laplace
    diff2 = dat2$lbf.numerical - dat2$lbf.wakefeld
    ymin = min(diff1[indx], diff2[indx]) - 1
    ymax = max(diff1[indx], diff2[indx]) + 1
    plot(dat2$n[indx], diff1[indx], ylim = c(ymin, ymax),
         main = paste0("censor=",censor_lvl[i], ", MAF=", af[j]),
         xlab = "sample size", ylab = "difference in log(BF)", cex = 0.8, pch = 20)
    points(dat2$n[indx], diff2[indx], col = "#00CCFF", cex = 0.8, pch = 20)
    fit = lm(diff2[indx] ~ dat2$n[indx])
    abline(fit, col = "grey", lty = 2) 
    legend("bottomleft", legend = c("log(BF.lp)", 'log(BF.wf)'), col = c(1, "#00CCFF"), pch = 20, cex = 0.8)
  }
}

Version Author Date
c219afc yunqi yang 2024-10-11
par(mfrow = c(6,4))
for (i in 1:length(censor_lvl)){
  for (j in 1:length(af)){
    indx = which(dat2$censor_lvl == censor_lvl[i] & dat2$allele_freq == af[j] & dat2$b1 == 0.01)
    diff1 = dat2$lbf.numerical - dat2$lbf.laplace
    diff2 = dat2$lbf.numerical - dat2$lbf.wakefeld
    ymin = min(diff1[indx], diff2[indx]) - 1
    ymax = max(diff1[indx], diff2[indx]) + 1
    plot(dat2$n[indx], diff1[indx], ylim = c(ymin, ymax),
         main = paste0("censor=",censor_lvl[i], ", MAF=", af[j]),
         xlab = "sample size", ylab = "difference in log(BF)", cex = 0.8, pch = 20)
    points(dat2$n[indx], diff2[indx], col = "#00CCFF", cex = 0.8, pch = 20)
    fit = lm(diff2[indx] ~ dat2$n[indx])
    abline(fit, col = "grey", lty = 2) 
    legend("bottomleft", legend = c("log(BF.lp)", 'log(BF.wf)'), col = c(1, "#00CCFF"), pch = 20, cex = 0.8)
  }
}

Version Author Date
c219afc yunqi yang 2024-10-11
# Sample size small 
par(mfrow = c(6,4))
for (i in 1:length(censor_lvl)){
  for (j in 1:length(af)){
    indx = which(dat2$censor_lvl == censor_lvl[i] & dat2$allele_freq == af[j] & dat2$n == 5e3)
    diff1 = dat2$lbf.numerical - dat2$lbf.laplace
    diff2 = dat2$lbf.numerical - dat2$lbf.wakefeld
    ymin = min(diff1[indx], diff2[indx]) - 0.5
    ymax = max(diff1[indx], diff2[indx]) + 0.5
    plot(dat2$bhat[indx], diff1[indx], ylim = c(ymin, ymax), xlab = "bhat", ylab = "difference in log(BF)",
         main = paste0("censor=",censor_lvl[i], ", MAF=", af[j]), cex = 0.8, pch = 20)
    points(dat2$bhat[indx], diff2[indx], col = "#00CCFF", cex = 0.8, pch = 20)
    legend("topleft", legend = c("log(BF.lp)", 'log(BF.wf)'), col = c(1, "#00CCFF"), pch = 20, cex = 0.8)
  }
}

Version Author Date
c219afc yunqi yang 2024-10-11
# Large n
par(mfrow = c(6,4))
for (i in 1:length(censor_lvl)){
  for (j in 1:length(af)){
    indx = which(dat2$censor_lvl == censor_lvl[i] & dat2$allele_freq == af[j] & dat2$n == 5e5)
    diff1 = dat2$lbf.numerical - dat2$lbf.laplace
    diff2 = dat2$lbf.numerical - dat2$lbf.wakefeld
    ymin = min(diff1[indx], diff2[indx]) - 0.5
    ymax = max(diff1[indx], diff2[indx]) + 0.5
    plot(dat2$bhat[indx], diff1[indx], ylim = c(ymin, ymax), xlab = "bhat", ylab = "difference in log(BF)",
         main = paste0("censor=",censor_lvl[i], ", MAF=", af[j]), cex = 0.8, pch = 20)
    points(dat2$bhat[indx], diff2[indx], col = "#00CCFF", cex = 0.8, pch = 20)
    #legend("topright", legend = c("log(BF.lp)", 'log(BF.wf)'), col = c(1, "#00CCFF"), pch = 20, cex = 0.8)
  }
}

Version Author Date
c219afc yunqi yang 2024-10-11
8a1ddda yunqi yang 2024-10-07

1.2 Plot different BFs across N/bhat

# Setting: b1 = 1
par(mfrow = c(6,4))
for (i in 1:length(censor_lvl)){
  for (j in 1:length(af)){
    indx = which(dat2$censor_lvl == censor_lvl[i] & dat2$allele_freq == af[j] & dat2$b1 == 1)
    ymin = min(dat2$lbf.numerical[indx], dat2$lbf.laplace[indx], dat2$lbf.wakefeld[indx]) - 1
    ymax = max(dat2$lbf.numerical[indx], dat2$lbf.laplace[indx], dat2$lbf.wakefeld[indx]) + 1
    plot(log10(dat2$n[indx]), dat2$lbf.numerical[indx], ylim = c(ymin, ymax),
         main = paste0("censor=",censor_lvl[i], ", MAF=", af[j]),
         xlab = "log10(sample size)", ylab = "log_10(BF)s", cex = 0.8, pch = 20)
    points(log10(dat2$n[indx])-0.03, dat2$lbf.laplace[indx], col = "#00CCFF", cex = 0.8, pch = 20)
    points(log10(dat2$n[indx])+0.03, dat2$lbf.wakefeld[indx], col = 2, cex = 0.8, pch = 20)
    legend("topleft", legend = c("log(BF.numerical)", "log(BF.lp)", 'log(BF.wf)'), col = c(1, "#00CCFF", 2), pch = 20, cex = 0.8)
  }
}

Version Author Date
c219afc yunqi yang 2024-10-11
8a1ddda yunqi yang 2024-10-07
# Setting: b1 = 0.1
par(mfrow = c(6,4))
for (i in 1:length(censor_lvl)){
  for (j in 1:length(af)){
    indx = which(dat2$censor_lvl == censor_lvl[i] & dat2$allele_freq == af[j] & dat2$b1 == 0.1)
    ymin = min(dat2$lbf.numerical[indx], dat2$lbf.laplace[indx], dat2$lbf.wakefeld[indx]) - 1
    ymax = max(dat2$lbf.numerical[indx], dat2$lbf.laplace[indx], dat2$lbf.wakefeld[indx]) + 1
    plot(log10(dat2$n[indx]), dat2$lbf.numerical[indx], ylim = c(ymin, ymax),
         main = paste0("censor=",censor_lvl[i], ", MAF=", af[j]),
         xlab = "log10(sample size)", ylab = "log_10(BF)s", cex = 0.8, pch = 20)
    points(log10(dat2$n[indx])-0.03, dat2$lbf.laplace[indx], col = "#00CCFF", cex = 0.8, pch = 20)
    points(log10(dat2$n[indx])+0.03, dat2$lbf.wakefeld[indx], col = 2, cex = 0.8, pch = 20)
    legend("topleft", legend = c("log(BF.numerical)", "log(BF.lp)", 'log(BF.wf)'), col = c(1, "#00CCFF", 2), pch = 20, cex = 0.8)
  }
}

Version Author Date
c219afc yunqi yang 2024-10-11
8a1ddda yunqi yang 2024-10-07
# Setting: b1 = 0.01
par(mfrow = c(6,4))
for (i in 1:length(censor_lvl)){
  for (j in 1:length(af)){
    indx = which(dat2$censor_lvl == censor_lvl[i] & dat2$allele_freq == af[j] & dat2$b1 == 0.01)
    ymin = min(dat2$lbf.numerical[indx], dat2$lbf.laplace[indx], dat2$lbf.wakefeld[indx]) - 1
    ymax = max(dat2$lbf.numerical[indx], dat2$lbf.laplace[indx], dat2$lbf.wakefeld[indx]) + 1
    plot(log10(dat2$n[indx]), dat2$lbf.numerical[indx], ylim = c(ymin, ymax),
         main = paste0("censor=",censor_lvl[i], ", MAF=", af[j]),
         xlab = "log10(sample size)", ylab = "log_10(BF)s", cex = 0.8, pch = 20)
    points(log10(dat2$n[indx])-0.03, dat2$lbf.laplace[indx], col = "#00CCFF", cex = 0.8, pch = 20)
    points(log10(dat2$n[indx])+0.03, dat2$lbf.wakefeld[indx], col = 2, cex = 0.8, pch = 20)
    legend("topleft", legend = c("log(BF.numerical)", "log(BF.lp)", 'log(BF.wf)'), col = c(1, "#00CCFF", 2), pch = 20, cex = 0.8)
  }
}

Version Author Date
c219afc yunqi yang 2024-10-11
8a1ddda yunqi yang 2024-10-07
# Sample size small 
par(mfrow = c(6,4))
for (i in 1:length(censor_lvl)){
  for (j in 1:length(af)){
    indx = which(dat2$censor_lvl == censor_lvl[i] & dat2$allele_freq == af[j] & dat2$n == 5e3)
    ymin = min(dat2$lbf.numerical[indx], dat2$lbf.laplace[indx], dat2$lbf.wakefeld[indx]) - 1
    ymax = max(dat2$lbf.numerical[indx], dat2$lbf.laplace[indx], dat2$lbf.wakefeld[indx]) + 1
    plot(dat2$bhat[indx], dat2$lbf.numerical[indx], ylim = c(ymin, ymax),
         main = paste0("censor=",censor_lvl[i], ", MAF=", af[j]),
         xlab = "bhat", ylab = "log_10(BF)s", cex = 0.8, pch = 20)
    points(dat2$bhat[indx], dat2$lbf.laplace[indx], col = "#00CCFF", cex = 0.8, pch = 20)
    points(dat2$bhat[indx], dat2$lbf.wakefeld[indx], col = 2, cex = 0.8, pch = 20)
    legend("bottomright", legend = c("log(BF.numerical)", "log(BF.lp)", 'log(BF.wf)'), col = c(1, "#00CCFF", 2), pch = 20, cex = 0.8)
  }
}

Version Author Date
410628d yunqi yang 2024-10-11
c219afc yunqi yang 2024-10-11
# Large n
par(mfrow = c(6,4))
for (i in 1:length(censor_lvl)){
  for (j in 1:length(af)){
    indx = which(dat2$censor_lvl == censor_lvl[i] & dat2$allele_freq == af[j] & dat2$n == 5e5)
    ymin = min(dat2$lbf.numerical[indx], dat2$lbf.laplace[indx], dat2$lbf.wakefeld[indx]) - 1
    ymax = max(dat2$lbf.numerical[indx], dat2$lbf.laplace[indx], dat2$lbf.wakefeld[indx]) + 1
    plot(dat2$bhat[indx], dat2$lbf.numerical[indx], ylim = c(ymin, ymax),
         main = paste0("censor=",censor_lvl[i], ", MAF=", af[j]),
         xlab = "bhat", ylab = "log_10(BF)s", cex = 0.8, pch = 20)
    points(dat2$bhat[indx], dat2$lbf.laplace[indx], col = "#00CCFF", cex = 0.8, pch = 20)
    points(dat2$bhat[indx], dat2$lbf.wakefeld[indx], col = 2, cex = 0.8, pch = 20)
    legend("bottomright", legend = c("log(BF.numerical)", "log(BF.lp)", 'log(BF.wf)'), col = c(1, "#00CCFF", 2), pch = 20, cex = 0.8)
  }
}

Version Author Date
410628d yunqi yang 2024-10-11
c219afc yunqi yang 2024-10-11

1.3 Plot numerical BF against wakefield/laplace BF

pdf("/project2/mstephens/yunqiyang/surv-susie/survival-susie/output/bf_comparison_b_1_n_500000.pdf", width = 8, height = 12)
par(mfrow = c(4,3))
censor_lvl <- c(0, 0.4, 0.8, 0.99)
af <- c(0.001, 0.010, 0.100)
for (i in 1:length(censor_lvl)){
  for (j in 1:length(af)){
    indx = which(res$simulate.censor_lvl == censor_lvl[i] & res$simulate.allele_freq == af[j]
                 & res$simulate.n == 5e5 & res$simulate.b1 == 1)
    dat = t(sapply(indx, function(x) res$compute_bf.result[[x]]))
    plot(x = dat[, 'lbf.numerical'], y = dat[, 'lbf.laplace'], pch = 20, main = paste0("censor=",censor_lvl[i], ", MAF=", af[j]),
         ylim = c(min(dat[,c(4:6)])-1, max(dat[, c(4:6)])+1), cex = 0.8, col = "blue",
         xlab = TeX("$log_{10}$(BF numerical)"), ylab = TeX("$log_{10}$($BF_{LM}$)"))
    abline(a = 0, b = 1, col = "grey")
    #legend("topleft", legend = c(TeX("$log_{10}$(BF.lp)"), TeX("$log_{10}$(BF.wf)")), col = c(1, "#26B300"), pch = 20, cex = 0.8)
  }
}
pdf("/project2/mstephens/yunqiyang/surv-susie/survival-susie/output/bf_comparison_b_0.1_n_500000.pdf", width = 8, height = 12)
par(mfrow = c(4,3))
censor_lvl <- c(0, 0.4, 0.8, 0.99)
af <- c(0.001, 0.010, 0.100)
for (i in 1:length(censor_lvl)){
  for (j in 1:length(af)){
    indx = which(res$simulate.censor_lvl == censor_lvl[i] & res$simulate.allele_freq == af[j]
                 & res$simulate.n == 5e5 & res$simulate.b1 == 0.1)
    dat = t(sapply(indx, function(x) res$compute_bf.result[[x]]))
    plot(x = dat[, 'lbf.numerical'], y = dat[, 'lbf.laplace'], pch = 20, main = paste0("censor=",censor_lvl[i], ", MAF=", af[j]),
         ylim = c(min(dat[,c(4:6)])-1, max(dat[, c(4:6)])+1), cex = 0.8,
         xlab = TeX("$log_{10}(BF^{GH})$"), ylab = TeX("Other $log_{10}$(BFs)"))
    points(dat[, 'lbf.numerical'], dat[,'lbf.wakefeld'], col = "#26B300", pch = 20, cex = 0.8)
    abline(a = 0, b = 1, col = "grey")
    legend("topleft", legend = c(TeX("$log_{10}(\\hat{BF})$"), TeX("$log_{10}(ABF)$")), col = c(1, "#26B300"), pch = 20, cex = 0.8)
  }
}
pdf("/project2/mstephens/yunqiyang/surv-susie/survival-susie/output/bf_comparison_b_0.01_n_500000.pdf", width = 8, height = 18)
par(mfrow = c(6,3))

for (i in 1:length(censor_lvl)){
  for (j in 1:length(af)){
    indx = which(res$simulate.censor_lvl == censor_lvl[i] & res$simulate.allele_freq == af[j]
                 & res$simulate.n == 5e5 & res$simulate.b1 == 0.01)
    dat = t(sapply(indx, function(x) res$compute_bf.result[[x]]))
    plot(x = dat[, 'lbf.numerical'], y = dat[, 'lbf.laplace'], pch = 20, main = paste0("censor=",censor_lvl[i], ", MAF=", af[j]),
         ylim = c(min(dat[,c(4:6)])-1, max(dat[,c(4:6)])+1), cex = 0.8,
         xlab = TeX("$log_{10}(BF^{GH})$"), ylab = TeX("Other $log_{10}$(BFs)"))
    points(dat[, 'lbf.numerical'], dat[,'lbf.wakefeld'], col = "#26B300", pch = 20, cex = 0.8)
    abline(a = 0, b = 1, col = "grey")
    legend("topleft", legend = c(TeX("$log_{10}(BF^L)$"), TeX("$log_{10}(BF^W)$")), col = c(1, "#26B300"), pch = 20, cex = 0.8)
  }
}

1. Check BF

dat.sub = dat2[dat2$censor_lvl == 0 & dat2$n == 5e5 & dat2$allele_freq == 0.1, ]
par(mfrow = c(2,2))
hist(dat.sub$zscore[dat.sub$b1 == -1], xlab = "zscore", main = "true b = -1; MAF = 0.1; n = 5e5; no censor")
hist(dat.sub$zscore[dat.sub$b1 == 1],  xlab = "zscore", main = "true b = 1; MAF = 0.1; n = 5e5; no censor")
hist(dat.sub$bhat[dat.sub$b1 == -1], xlab = "bhat", main = "true b = -1; MAF = 0.1; n = 5e5; no censor")
hist(dat.sub$bhat[dat.sub$b1 == 1], xlab = "bhat", main = "true b = 1; MAF = 0.1; n = 5e5; no censor")

Version Author Date
c219afc yunqi yang 2024-10-11
8a1ddda yunqi yang 2024-10-07
6445624 yunqi yang 2024-09-18
5b1f3bf yunqi yang 2024-09-15
546c2bf yunqi yang 2024-08-26
par(mfrow = c(2,2))
hist(dat.sub$lbf.numerical[dat.sub$b1 == -1],  xlab = "log(BF.numerical)", main = "true b = -1; MAF = 0.1; n = 5e5; no censor")
hist(dat.sub$lbf.numerical[dat.sub$b1 == 1],  xlab = "log(BF.numerical)", main = "true b = 1; MAF = 0.1; n = 5e5; no censor")
hist(dat.sub$lbf.wakefeld[dat.sub$b1 == -1],  xlab = "log(BF.wakefield)", main = "true b = -1; MAF = 0.1; n = 5e5; no censor")
hist(dat.sub$lbf.wakefeld[dat.sub$b1 == 1],  xlab = "log(BF.wakefield)", main = "true b = 1; MAF = 0.1; n = 5e5; no censor")

Version Author Date
c219afc yunqi yang 2024-10-11
8a1ddda yunqi yang 2024-10-07
6445624 yunqi yang 2024-09-18
5b1f3bf yunqi yang 2024-09-15
546c2bf yunqi yang 2024-08-26

2. Check BF when flip binary x.

I experimented with two different sample sizes, n = 5e3 and 5e5.

res = readRDS("/project2/mstephens/yunqiyang/surv-susie/sim202406/bf_comparison0825/res_bf.rds")

dat_list = lapply(1:length(res$DSC), function(x) res$compute_bf.result[[x]])
dat = do.call(rbind, dat_list)
dat2 = cbind(res$simulate.allele_freq, res$simulate.n, res$simulate.b1, dat)
colnames(dat2)[1:3] = c("allele_freq", "n", "b1")
dat2 = as.data.frame(dat2)
dat2$flip = res$compute_bf.flip

1. n = 5e3

par(mfrow = c(2,2))
n = 5e3
plot(dat2$zscore[dat2$n == n & dat2$flip == "flip"], dat2$zscore[dat2$n == n & dat2$flip == "nonflip"],
     xlim = c(-23,-18), ylim = c(18, 23), main = "zscore", xlab = "x flipped", ylab = "x original")
abline(a = 0, b = -1, col = "red")

plot(dat2$bhat[dat2$n == n & dat2$flip == "flip"], dat2$bhat[dat2$n == n & dat2$flip == "nonflip"], main = "bhat",
     xlab = "x flipped", ylab = "x original")
abline(a = 0, b = -1, col = "red")

plot(dat2$lbf.wakefeld[dat2$n == n & dat2$flip == "flip"], dat2$lbf.wakefeld[dat2$n == n & dat2$flip == "nonflip"], main = "Wakefield log(BF)", xlab = "x flipped", ylab = "x original")
abline(a = 0, b = 1, col = "red")

plot(dat2$lbf.numerical[dat2$n == n & dat2$flip == "flip"], dat2$lbf.numerical[dat2$n == n & dat2$flip == "nonflip"], main = "Numerical log(BF)", xlab = "x flipped", ylab = "x original")
abline(a = 0, b = 1, col = "red")

Version Author Date
c219afc yunqi yang 2024-10-11
8a1ddda yunqi yang 2024-10-07
6445624 yunqi yang 2024-09-18
5b1f3bf yunqi yang 2024-09-15
plot(dat2$bhat[dat2$n == n], dat2$lbf.wakefeld[dat2$n == n]-dat2$lbf.numerical[dat2$n == n], xlab = "bhat", ylab = "log(BF.wakefield) - log(BF.numerical)")

Version Author Date
c219afc yunqi yang 2024-10-11
8a1ddda yunqi yang 2024-10-07
6445624 yunqi yang 2024-09-18

2. n = 5e5

n = 5e5
plot(dat2$zscore[dat2$n == n & dat2$flip == "flip"], dat2$zscore[dat2$n == n & dat2$flip == "nonflip"],
     main = "zscore", xlab = "x flipped", ylab = "x original")
abline(a = 0, b = -1, col = "red")

Version Author Date
c219afc yunqi yang 2024-10-11
8a1ddda yunqi yang 2024-10-07
plot(dat2$bhat[dat2$n == n & dat2$flip == "flip"], dat2$bhat[dat2$n == n & dat2$flip == "nonflip"], main = "bhat")
abline(a = 0, b = -1, col = "red", xlab = "x flipped", ylab = "x original")

Version Author Date
c219afc yunqi yang 2024-10-11
plot(dat2$lbf.wakefeld[dat2$n == n & dat2$flip == "flip"], dat2$lbf.wakefeld[dat2$n == n & dat2$flip == "nonflip"], main = "Wakefield log(BF)", xlab = "x flipped", ylab = "x original")
abline(a = 0, b = 1, col = "red")

Version Author Date
c219afc yunqi yang 2024-10-11
plot(dat2$lbf.numerical[dat2$n == n & dat2$flip == "flip"], dat2$lbf.numerical[dat2$n == n & dat2$flip == "nonflip"], main = "Numerical log(BF)", xlab = "x flipped", ylab = "x original")
abline(a = 0, b = 1, col = "red")

Version Author Date
c219afc yunqi yang 2024-10-11
plot(dat2$bhat[dat2$n == n], dat2$lbf.wakefeld[dat2$n == n]-dat2$lbf.numerical[dat2$n == n], xlab = "bhat", ylab = "log(BF.wakefield) - log(BF.numerical)")

Version Author Date
c219afc yunqi yang 2024-10-11

3. Computation time of Gauss-Hermite vs. laplace BF

par(mfrow = c(1,2))
hist(dat2$time.lp)
hist(dat2$time.gh)

Version Author Date
c219afc yunqi yang 2024-10-11
mean(dat2$time.lp)
[1] 0.0111275
mean(dat2$time.gh)
[1] 35.52377

sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
 [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C         LC_TIME=C           
 [4] LC_COLLATE=C         LC_MONETARY=C        LC_MESSAGES=C       
 [7] LC_PAPER=C           LC_NAME=C            LC_ADDRESS=C        
[10] LC_TELEPHONE=C       LC_MEASUREMENT=C     LC_IDENTIFICATION=C 

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] latex2exp_0.9.4 workflowr_1.7.0

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.12      highr_0.9        compiler_4.2.0   pillar_1.9.0    
 [5] bslib_0.3.1      later_1.3.0      git2r_0.30.1     jquerylib_0.1.4 
 [9] tools_4.2.0      getPass_0.2-2    digest_0.6.29    jsonlite_1.8.0  
[13] evaluate_0.15    lifecycle_1.0.4  tibble_3.2.1     pkgconfig_2.0.3 
[17] rlang_1.1.3      cli_3.6.2        rstudioapi_0.13  yaml_2.3.5      
[21] xfun_0.30        fastmap_1.1.0    httr_1.4.3       stringr_1.5.1   
[25] knitr_1.39       fs_1.5.2         vctrs_0.6.5      sass_0.4.1      
[29] rprojroot_2.0.3  glue_1.6.2       R6_2.5.1         processx_3.8.0  
[33] fansi_1.0.3      rmarkdown_2.14   callr_3.7.3      magrittr_2.0.3  
[37] whisker_0.4      ps_1.7.0         promises_1.2.0.1 htmltools_0.5.2 
[41] httpuv_1.6.5     utf8_1.2.2       stringi_1.7.6