Last updated: 2024-08-18
Checks: 7 0
Knit directory: survival-data-analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20240324)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 0f0b4a7. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: output/.DS_Store
Ignored: scripts/.DS_Store
Ignored: scripts/.RData
Ignored: scripts/.Rhistory
Untracked files:
Untracked: data/gwas_chr17_33500001_39800000.txt
Unstaged changes:
Deleted: output/top_signal_AA.csv
Deleted: output/top_signal_AOA.csv
Deleted: output/top_signal_COA.csv
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/susie_asthma_result1.Rmd
) and HTML (docs/susie_asthma_result1.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 0f0b4a7 | yunqiyang0215 | 2024-08-18 | wflow_publish("analysis/susie_asthma_result1.Rmd") |
html | e0f9538 | yunqiyang0215 | 2024-07-04 | Build site. |
html | 00ae2c6 | yunqiyang0215 | 2024-06-28 | Build site. |
Rmd | 402e074 | yunqiyang0215 | 2024-06-28 | wflow_publish("analysis/susie_asthma_result1.Rmd") |
html | 38b4e25 | yunqiyang0215 | 2024-06-27 | Build site. |
Rmd | d80d61c | yunqiyang0215 | 2024-06-27 | wflow_publish("analysis/susie_asthma_result1.Rmd") |
html | 85ef406 | yunqiyang0215 | 2024-06-20 | Build site. |
Rmd | f5dfe15 | yunqiyang0215 | 2024-06-20 | wflow_publish("analysis/susie_asthma_result1.Rmd") |
html | fc8e7c4 | yunqiyang0215 | 2024-06-20 | Build site. |
Rmd | cb1583e | yunqiyang0215 | 2024-06-20 | wflow_publish("analysis/susie_asthma_result1.Rmd") |
Coxph Susie result on all asthma/ AOA/ COA in UKBiobank.
library(survival)
library(susieR)
devtools::load_all("/Users/nicholeyang/Downloads/logisticsusie")
ℹ Loading logisticsusie
Strong signals for COA, marginal significant for AOA. rs61894547 was the most significant SNP reported by Carole’s paper, but not the most significant one in my result. However, have the largest PIP.
region = "chr11_75500001_77400000"
res = readRDS(paste0("/Users/nicholeyang/Downloads/survivalsusie/result/asthma_self_report/result/all/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/Users/nicholeyang/downloads/survivalsusie/result/gwas_surv/all_gwas_", region, ".rds"))
fit = res[[1]]
X = res[[2]]
print(res[[3]])
user system elapsed
116070.891 65190.274 9564.771
pip <- logisticsusie:::get_pip(fit$alpha)
effect_estimate <- colSums(fit$alpha * fit$mu)
pip.sorted = sort(pip, decreasing = TRUE)
pip.sorted[1:10]
[1] 0.62563969 0.36681900 0.21652826 0.18795848 0.16064130 0.11232667
[7] 0.10899708 0.07188830 0.06583735 0.05808435
class(fit) = "susie"
cs <- susie_get_cs(fit, X)
cs
$cs
$cs$L2
[1] 829 1000
$cs$L1
[1] 943 951 952 954 961 964 965 968 979 1001
$purity
min.abs.corr mean.abs.corr median.abs.corr
L2 0.9428971 0.9428971 0.9428971
L1 0.9003599 0.9619019 0.9510408
$cs_index
[1] 2 1
$coverage
[1] 0.9890498 0.9574096
$requested_coverage
[1] 0.95
par(mfrow = c(1,2))
snps1 = colnames(X)[cs$cs$L1]
colors <- ifelse(rownames(gwas) %in% snps1, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.8, pch = 20, main = "CS 1")
snps2 = colnames(X)[cs$cs$L2]
colors <- ifelse(rownames(gwas) %in% snps2, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.8, pch = 20, main = "CS 2")
Version | Author | Date |
---|---|---|
fc8e7c4 | yunqiyang0215 | 2024-06-20 |
cbind(gwas[rownames(gwas) %in% snps1, ], pip[sort(cs$cs$L1)])
MAF missing.rate p.value.spa p.value.norm Stat
rs61893460_A 0.4520203 0 8.124552e-38 7.706256e-38 1613.997
rs7126418_T 0.4519984 0 1.379899e-37 1.309905e-37 1607.742
rs7110818_T 0.4512180 0 1.195983e-37 1.134530e-37 1608.185
rs7114362_T 0.4968866 0 9.059745e-36 8.818957e-36 -1570.311
rs7936070_T 0.4766971 0 1.503789e-37 1.452115e-37 1612.065
rs7936312_T 0.4766166 0 1.251399e-37 1.208159e-37 1613.890
rs7936323_A 0.4765950 0 1.070192e-37 1.033056e-37 1615.204
rs7936434_C 0.4768852 0 2.342714e-37 2.263324e-37 1607.740
rs11236791_A 0.4518935 0 8.407000e-38 7.973748e-38 1613.119
rs11236797_A 0.4510802 0 5.710907e-38 5.409022e-38 1616.420
Var z
rs61893460_A 15755.24 12.85849 0.06583735
rs7126418_T 15733.73 12.81742 0.04220489
rs7110818_T 15715.07 12.82856 0.04494202
rs7114362_T 15815.14 -12.48674 0.02049406
rs7936070_T 15838.20 12.80942 0.16064130
rs7936312_T 15838.79 12.82369 0.18795848
rs7936323_A 15834.63 12.83582 0.21652826
rs7936434_C 15838.51 12.77494 0.10899708
rs11236791_A 15744.57 12.85586 0.05808435
rs11236797_A 15735.62 12.88583 0.07188830
cbind(gwas[rownames(gwas) %in% snps2, ], pip[sort(cs$cs$L2)])
MAF missing.rate p.value.spa p.value.norm Stat
rs61894547_T 0.05155540 0 3.916273e-24 8.543620e-25 570.9379
rs55646091_A 0.05086819 0 5.110427e-25 9.672793e-26 572.9645
Var z
rs61894547_T 3083.681 10.28145 0.3668190
rs55646091_A 2983.742 10.48931 0.6256397
gwas1 <- readRDS("/Users/nicholeyang/Downloads/survivalsusie/result/asthma_self_report/result/gwas_surv_conditional/all_gwas_chr11_75500001_77400000_rs11236797_A.rds")
gwas2 <- readRDS("/Users/nicholeyang/Downloads/survivalsusie/result/asthma_self_report/result/gwas_surv_conditional/all_gwas_chr11_75500001_77400000_rs55646091_A.rds")
par(mfrow = c(1,2))
snps1 = colnames(X)[cs$cs$L1]
colors <- ifelse(rownames(gwas2) %in% snps1, "red", "black")
plot(-log10(gwas2[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.8, pch = 20, main = "CS 1: conditional on rs55646091_A")
snps2 = colnames(X)[cs$cs$L2]
colors <- ifelse(rownames(gwas1) %in% snps2, "red", "black")
plot(-log10(gwas1[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.8, pch = 20, main = "CS 2: conditional on rs11236797_A")
Version | Author | Date |
---|---|---|
00ae2c6 | yunqiyang0215 | 2024-06-28 |
region = "chr11_75500001_77400000"
res = readRDS(paste0("/Users/nicholeyang/Downloads/survivalsusie/result/asthma_self_report/result/coa/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/Users/nicholeyang/downloads/survivalsusie/result/gwas_surv/coa_gwas_", region, ".rds"))
fit = res[[1]]
X = res[[2]]
pip <- logisticsusie:::get_pip(fit$alpha)
effect_estimate <- colSums(fit$alpha * fit$mu)
class(fit) = "susie"
cs <- susie_get_cs(fit, X)
cs
$cs
$cs$L1
[1] 943 951 952 961 964 965 968 979 1001
$cs$L2
[1] 829 1000
$purity
min.abs.corr mean.abs.corr median.abs.corr
L1 0.9491341 0.9718758 0.9511525
L2 0.9427185 0.9427185 0.9427185
$cs_index
[1] 1 2
$coverage
[1] 0.9624937 0.9999841
$requested_coverage
[1] 0.95
par(mfrow = c(1,2))
snps1 = colnames(X)[cs$cs$L1]
colors <- ifelse(rownames(gwas) %in% snps1, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.8, pch = 20, main = "CS 1")
snps2 = colnames(X)[cs$cs$L2]
colors <- ifelse(rownames(gwas) %in% snps2, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.8, pch = 20, main = "CS 2")
cbind(gwas[rownames(gwas) %in% snps1, ], pip[sort(cs$cs$L1)])
MAF missing.rate p.value.spa p.value.norm Stat Var
rs61893460_A 0.4514041 0 1.888726e-32 1.474990e-32 748.3125 3966.573
rs7126418_T 0.4513778 0 4.649545e-32 3.656904e-32 743.0086 3961.141
rs7110818_T 0.4505984 0 7.754035e-32 6.114069e-32 739.8471 3956.479
rs7936070_T 0.4760599 0 1.678309e-31 1.405170e-31 738.3536 3988.157
rs7936312_T 0.4759791 0 1.500403e-31 1.255331e-31 738.9695 3988.281
rs7936323_A 0.4759578 0 1.237967e-31 1.034642e-31 739.9095 3987.253
rs7936434_C 0.4762484 0 1.630837e-31 1.365581e-31 738.5071 3988.160
rs11236791_A 0.4512776 0 9.757501e-33 7.576781e-33 751.5570 3963.893
rs11236797_A 0.4504619 0 1.242892e-32 9.645073e-33 750.0921 3961.785
z
rs61893460_A 11.88161 0.11450379
rs7126418_T 11.80548 0.05154802
rs7110818_T 11.76217 0.03303243
rs7936070_T 11.69172 0.10156417
rs7936312_T 11.70129 0.11189172
rs7936323_A 11.71768 0.13112034
rs7936434_C 11.69414 0.10280884
rs11236791_A 11.93716 0.18418639
rs11236797_A 11.91706 0.14736334
cbind(gwas[rownames(gwas) %in% snps2, ], pip[sort(cs$cs$L2)])
MAF missing.rate p.value.spa p.value.norm Stat
rs61894547_T 0.05133647 0 1.683734e-30 1.547158e-33 335.6277
rs55646091_A 0.05064274 0 6.896131e-30 7.803404e-33 326.4570
Var z
rs61894547_T 773.3937 12.06862 0.8835178
rs55646091_A 748.2185 11.93471 0.1193839
region = "chr11_75500001_77400000"
res = readRDS(paste0("/Users/nicholeyang/Downloads/survivalsusie/result/asthma_self_report/result/aoa/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/Users/nicholeyang/downloads/survivalsusie/result/gwas_surv/aoa_gwas_", region, ".rds"))
fit = res[[1]]
X = res[[2]]
pip <- logisticsusie:::get_pip(fit$alpha)
effect_estimate <- colSums(fit$alpha * fit$mu)
class(fit) = "susie"
cs <- susie_get_cs(fit, X)
cs
$cs
$cs$L1
[1] 927 943 951 952 954 961 964 965 968 975 979 990 998 1001 1011
$purity
min.abs.corr mean.abs.corr median.abs.corr
L1 0.8866167 0.9479983 0.9486556
$cs_index
[1] 1
$coverage
[1] 0.9745531
$requested_coverage
[1] 0.95
snps1 = colnames(X)[cs$cs$L1]
colors <- ifelse(rownames(gwas) %in% snps1, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.8, pch = 20, main = "CS 1")
cbind(gwas[rownames(gwas) %in% snps1, ], pip[sort(cs$cs$L1)])
MAF missing.rate p.value.spa p.value.norm Stat
rs2212434_T 0.4459042 0 4.347817e-08 4.336461e-08 523.1766
rs61893460_A 0.4500073 0 3.925327e-08 3.915096e-08 526.1600
rs7126418_T 0.4499901 0 4.704502e-08 4.692550e-08 522.7235
rs7110818_T 0.4492170 0 3.777544e-08 3.767622e-08 526.1340
rs7114362_T 0.4987621 0 1.131798e-08 1.128653e-08 -548.1324
rs7936070_T 0.4747088 0 3.529517e-08 3.520834e-08 529.4822
rs7936312_T 0.4746268 0 3.328826e-08 3.320570e-08 530.4794
rs7936323_A 0.4746036 0 3.229781e-08 3.221736e-08 530.9194
rs7936434_C 0.4748971 0 4.448130e-08 4.437532e-08 525.5616
rs4494327_T 0.4991553 0 2.475051e-08 2.468832e-08 -536.0428
rs11236791_A 0.4498759 0 4.986495e-08 4.973931e-08 521.9213
rs10160518_G 0.4992504 0 2.018080e-08 2.012874e-08 -539.5311
rs2155219_T 0.4996877 0 3.247112e-08 3.239242e-08 -531.7559
rs11236797_A 0.4490612 0 4.427225e-08 4.415844e-08 523.8126
rs7930763_A 0.4986349 0 2.953327e-08 2.946081e-08 -532.3829
Var z
rs2212434_T 9125.973 5.476571 0.05095615
rs61893460_A 9169.745 5.494639 0.05386839
rs7126418_T 9156.888 5.462583 0.04696706
rs7110818_T 9146.277 5.501412 0.05645191
rs7114362_T 9214.531 -5.710167 0.17430117
rs7936070_T 9223.016 5.513342 0.05640291
rs7936312_T 9223.316 5.523635 0.05932550
rs7936323_A 9220.907 5.528939 0.06116207
rs7936434_C 9223.104 5.472491 0.04577507
rs4494327_T 9243.538 -5.575455 0.08467042
rs11236791_A 9163.475 5.452240 0.04293851
rs10160518_G 9246.327 -5.610891 0.10092059
rs2155219_T 9253.167 -5.527988 0.06488349
rs11236797_A 9158.914 5.473359 0.04584611
rs7930763_A 9219.470 -5.544611 0.06932303
rm()
No GWAS significant signal for COA, marginal significant for AOA.
Result: for all asthma and COA, no CS found. For AOA, there is one CS. rs56389811_T was the top significant signal reported by Carole’s paper, and also the top significant one found in AOA survival gwas. PIP = 0.2
region = "chr12_46000001_48700000"
res = readRDS(paste0("/Users/nicholeyang/Downloads/survivalsusie/result/asthma_self_report/result/all/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/Users/nicholeyang/downloads/survivalsusie/result/gwas_surv/all_gwas_", region, ".rds"))
fit = res[[1]]
X = res[[2]]
print(res[[3]])
user system elapsed
58385.924 32800.712 4853.472
pip <- logisticsusie:::get_pip(fit$alpha)
effect_estimate <- colSums(fit$alpha * fit$mu)
pip.sorted = sort(pip, decreasing = TRUE)
pip.sorted[1:10]
[1] 0.16103664 0.15329430 0.13547046 0.12479556 0.12383535 0.06007752
[7] 0.05636508 0.04679767 0.04200849 0.03698004
class(fit) = "susie"
cs <- susie_get_cs(fit, X)
cs
$cs
NULL
$coverage
NULL
$requested_coverage
[1] 0.95
region = "chr12_46000001_48700000"
res = readRDS(paste0("/Users/nicholeyang/Downloads/survivalsusie/result/asthma_self_report/result/coa/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/Users/nicholeyang/downloads/survivalsusie/result/gwas_surv/coa_gwas_", region, ".rds"))
fit = res[[1]]
X = res[[2]]
pip <- logisticsusie:::get_pip(fit$alpha)
effect_estimate <- colSums(fit$alpha * fit$mu)
class(fit) = "susie"
cs <- susie_get_cs(fit, X)
cs
$cs
NULL
$coverage
NULL
$requested_coverage
[1] 0.95
region = "chr12_46000001_48700000"
res = readRDS(paste0("/Users/nicholeyang/Downloads/survivalsusie/result/asthma_self_report/result/aoa/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/Users/nicholeyang/downloads/survivalsusie/result/gwas_surv/aoa_gwas_", region, ".rds"))
fit = res[[1]]
X = res[[2]]
pip <- logisticsusie:::get_pip(fit$alpha)
effect_estimate <- colSums(fit$alpha * fit$mu)
class(fit) = "susie"
cs <- susie_get_cs(fit, X)
cs
$cs
$cs$L1
[1] 760 785 787 808 812 814 818 828 829 842 848
$purity
min.abs.corr mean.abs.corr median.abs.corr
L1 0.6662121 0.8783207 0.9508017
$cs_index
[1] 1
$coverage
[1] 0.9576976
$requested_coverage
[1] 0.95
snps1 = colnames(X)[cs$cs$L1]
colors <- ifelse(rownames(gwas) %in% snps1, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.8, pch = 20, main = "CS 1")
cbind(gwas[rownames(gwas) %in% snps1, ], pip[sort(cs$cs$L1)])
MAF missing.rate p.value.spa p.value.norm Stat
rs73107980_T 0.2409617 0 1.115805e-09 1.092364e-09 -498.5698
rs73107993_T 0.2486728 0 4.381210e-10 4.282053e-10 -519.4763
rs55726902_A 0.2423548 0 5.007362e-10 4.890012e-10 -513.1836
rs11168244_T 0.2389714 0 8.888380e-11 8.613573e-11 -531.9767
rs11168245_G 0.2391581 0 8.227981e-11 7.971327e-11 -533.1735
rs11168246_A 0.2092811 0 1.314588e-09 1.281257e-09 -453.4069
rs56389811_T 0.2389045 0 5.364627e-11 5.187028e-11 -538.2475
rs11168250_T 0.2389891 0 5.846701e-11 5.656148e-11 -537.8975
rs11168252_A 0.2392910 0 5.820103e-11 5.630318e-11 -536.5117
rs148637595_G 0.2874153 0 6.347859e-10 6.250121e-10 -531.5634
rs7487602_A 0.2840438 0 5.896057e-10 5.801995e-10 -535.0395
Var z
rs73107980_T 6690.561 -6.095294 0.01502229
rs73107993_T 6922.954 -6.243383 0.03244243
rs55726902_A 6801.466 -6.222594 0.02943322
rs11168244_T 6719.949 -6.489475 0.13284714
rs11168245_G 6726.018 -6.501141 0.14355065
rs11168246_A 5580.044 -6.069730 0.01831095
rs56389811_T 6720.984 -6.565466 0.21315174
rs11168250_T 6738.728 -6.552553 0.19773661
rs11168252_A 6702.652 -6.553237 0.19340901
rs148637595_G 7388.775 -6.183990 0.01551830
rs7487602_A 7457.418 -6.195718 0.01628569
rm(res, gwas, X, fit)
Very strong signals for COA, very week signals for AOA.
region = "chr17_33500001_39800000"
res = readRDS(paste0("/Users/nicholeyang/Downloads/survivalsusie/result/asthma_self_report/result/all/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/Users/nicholeyang/downloads/survivalsusie/result/gwas_surv/all_gwas_", region, ".rds"))
fit = res[[1]]
X = res[[2]]
print(res[[3]])
user system elapsed
268671.80 153861.85 22346.75
pip <- logisticsusie:::get_pip(fit$alpha)
effect_estimate <- colSums(fit$alpha * fit$mu)
pip.sorted = sort(pip, decreasing = TRUE)
pip.sorted[1:10]
[1] 0.82458455 0.70062370 0.30037338 0.12825964 0.11330354 0.10882188
[7] 0.10600954 0.09703998 0.09403512 0.08914059
class(fit) = "susie"
cs <- susie_get_cs(fit, X)
cs
$cs
$cs$L1
[1] 1467 1470 1471 1478 1479 1484 1491 1493 1501 1524
$cs$L2
[1] 3086 3350
$purity
min.abs.corr mean.abs.corr median.abs.corr
L1 0.9748638 0.9939885 0.9991312
L2 0.8652420 0.8652420 0.8652420
$cs_index
[1] 1 2
$coverage
[1] 0.9607429 0.9994304
$requested_coverage
[1] 0.95
par(mfrow = c(1,2))
snps1 = colnames(X)[cs$cs$L1]
colors <- ifelse(rownames(gwas) %in% snps1, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.5, pch = 20, main = "CS 1")
snps2 = colnames(X)[cs$cs$L2]
colors <- ifelse(rownames(gwas) %in% snps2, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.5, pch = 20, main = "CS 2")
Version | Author | Date |
---|---|---|
00ae2c6 | yunqiyang0215 | 2024-06-28 |
cbind(gwas[rownames(gwas) %in% snps1, ], pip[sort(cs$cs$L1)])
MAF missing.rate p.value.spa p.value.norm Stat
rs11651596_C 0.4711579 0 9.947331e-36 9.618739e-36 -1570.315
rs12949100_A 0.4709323 0 7.665040e-36 7.409160e-36 -1572.964
rs8069176_A 0.4712393 0 1.199672e-35 1.160289e-35 -1568.498
rs4795399_C 0.4712166 0 8.096519e-36 7.827701e-36 -1573.030
rs2305480_A 0.4712096 0 9.136234e-36 8.833860e-36 -1571.808
rs11078926_A 0.4711895 0 9.466887e-36 9.153782e-36 -1571.440
rs11078927_T 0.4710100 0 1.059990e-35 1.024952e-35 -1570.176
rs12939832_A 0.4710054 0 8.304129e-36 8.027765e-36 -1572.232
rs4795400_T 0.4712255 0 7.079374e-36 6.843430e-36 -1573.472
rs9303279_C 0.4799832 0 1.659336e-35 1.610852e-35 -1565.204
Var z
rs11651596_C 15832.73 -12.47983 0.08914059
rs12949100_A 15833.46 -12.50060 0.11330354
rs8069176_A 15834.00 -12.46489 0.07470562
rs4795399_C 15845.87 -12.49623 0.10882188
rs2305480_A 15845.64 -12.48661 0.09703998
rs11078926_A 15845.40 -12.48378 0.09403512
rs11078927_T 15842.77 -12.47478 0.08500385
rs12939832_A 15834.88 -12.49422 0.10600954
rs4795400_T 15827.70 -12.50691 0.12825964
rs9303279_C 15834.02 -12.43871 0.07128375
cbind(gwas[rownames(gwas) %in% snps2, ], pip[sort(cs$cs$L2)])
MAF missing.rate p.value.spa p.value.norm Stat
rs112401631_A 0.02299226 0 3.594625e-10 2.742929e-10 227.7786
rs8067124_T 0.02203134 0 1.540705e-09 1.236998e-09 200.3148
Var z
rs112401631_A 1301.973 6.312653 0.7006237
rs8067124_T 1087.127 6.075373 0.3003734
gwas1 <- readRDS("/Users/nicholeyang/downloads/survivalsusie/result/asthma_self_report/result/gwas_surv_conditional/all_gwas_chr17_33500001_39800000_rs4795400_T.rds")
snps2 = colnames(X)[cs$cs$L2]
colors <- ifelse(rownames(gwas1) %in% snps2, "red", "black")
plot(-log10(gwas1[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.8, pch = 20, main = "CS 2: conditional on rs11236797_A")
rm(res, gwas, X, fit)
region = "chr17_33500001_39800000"
res = readRDS(paste0("/Users/nicholeyang/Downloads/survivalsusie/result/asthma_self_report/result/coa/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/Users/nicholeyang/downloads/survivalsusie/result/gwas_surv/coa_gwas_", region, ".rds"))
fit = res[[1]]
X = res[[2]]
pip <- logisticsusie:::get_pip(fit$alpha)
effect_estimate <- colSums(fit$alpha * fit$mu)
pip.sorted = sort(pip, decreasing = TRUE)
class(fit) = "susie"
cs <- susie_get_cs(fit, X)
cs
$cs
$cs$L1
[1] 1467 1470 1471 1478 1479 1484 1491 1493
$purity
min.abs.corr mean.abs.corr median.abs.corr
L1 0.9987126 0.999371 0.9993555
$cs_index
[1] 1
$coverage
[1] 0.9736551
$requested_coverage
[1] 0.95
snps1 = colnames(X)[cs$cs$L1]
colors <- ifelse(rownames(gwas) %in% snps1, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.5, pch = 20, main = "CS 1")
cbind(gwas[rownames(gwas) %in% snps1, ], pip[sort(cs$cs$L1)])
MAF missing.rate p.value.spa p.value.norm Stat
rs11651596_C 0.4716738 0 2.513496e-85 4.425413e-86 -1241.664
rs12949100_A 0.4714520 0 6.209015e-85 1.105361e-85 -1238.742
rs8069176_A 0.4717552 0 2.498088e-85 4.406865e-86 -1241.723
rs4795399_C 0.4717367 0 1.969724e-85 3.456568e-86 -1242.971
rs2305480_A 0.4717295 0 2.024486e-85 3.553133e-86 -1242.874
rs11078926_A 0.4717091 0 2.495289e-85 4.394374e-86 -1242.184
rs11078927_T 0.4715354 0 8.665170e-85 1.555309e-85 -1238.003
rs12939832_A 0.4715304 0 8.768405e-85 1.574481e-85 -1237.651
Var z
rs11651596_C 3987.344 -19.66356 0.14753514
rs12949100_A 3987.433 -19.61707 0.06369706
rs8069176_A 3987.637 -19.66377 0.14197811
rs4795399_C 3990.659 -19.67609 0.19387485
rs2305480_A 3990.600 -19.67469 0.18754610
rs11078926_A 3990.540 -19.66392 0.15183542
rs11078927_T 3989.740 -19.59970 0.04757928
rs12939832_A 3987.725 -19.59908 0.04694626
rm(res, gwas, X, fit)
region = "chr17_33500001_39800000"
res = readRDS(paste0("/Users/nicholeyang/Downloads/survivalsusie/result/asthma_self_report/result/aoa/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/Users/nicholeyang/downloads/survivalsusie/result/gwas_surv/aoa_gwas_", region, ".rds"))
fit = res[[1]]
X = res[[2]]
pip <- logisticsusie:::get_pip(fit$alpha)
effect_estimate <- colSums(fit$alpha * fit$mu)
pip.sorted = sort(pip, decreasing = TRUE)
class(fit) = "susie"
cs <- susie_get_cs(fit, X)
cs
$cs
NULL
$coverage
NULL
$requested_coverage
[1] 0.95
rm(res, gwas, X, fit)
Marginal significant signals for both COA and AOA. Combined analysis a lot more significant.
region = "chr10_6600001_12200000"
res = readRDS(paste0("/Users/nicholeyang/Downloads/survivalsusie/result/asthma_self_report/result/all/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/Users/nicholeyang/downloads/survivalsusie/result/gwas_surv/all_gwas_", region, ".rds"))
fit = res[[1]]
X = res[[2]]
print(res[[3]])
user system elapsed
488558.23 162450.30 72205.62
pip <- logisticsusie:::get_pip(fit$alpha)
effect_estimate <- colSums(fit$alpha * fit$mu)
pip.sorted = sort(pip, decreasing = TRUE)
pip.sorted[1:10]
[1] 0.8606128 0.7544745 0.6370307 0.5253848 0.3574363 0.2456690 0.2340421
[8] 0.1934556 0.1697711 0.1198051
class(fit) = "susie"
cs <- susie_get_cs(fit, X)
cs
$cs
$cs$L1
[1] 2465 2467 2472 2473 2475 2477 2482 2483 2487 2501
$cs$L3
[1] 2435 2440 2453
$cs$L5
[1] 2365 2391
$cs$L7
[1] 2433 3018
$cs$L6
[1] 112 113 115 116 120 121 123 124 126 127 128 130 131 132 133 134 136 137 138
[20] 139 140 142 143
$cs$L2
[1] 1531 1533 1536 1572 1573 1587 1590 1603 1616 1621 1628 1631 1633 1636 1640
[16] 1642 1645 1649 1655 1660 1663 1664 1665 1683 1684 1695 1715 1719 1727 1780
$purity
min.abs.corr mean.abs.corr median.abs.corr
L1 0.9962847 0.9986513 0.9989900
L3 0.9795058 0.9862823 0.9796464
L5 0.9698670 0.9698670 0.9698670
L7 0.8873465 0.8873465 0.8873465
L6 0.7206002 0.9193265 0.9841399
L2 0.6739457 0.9555920 0.9948012
$cs_index
[1] 1 3 5 7 6 2
$coverage
[1] 0.9723606 0.9998067 0.9502191 0.9583051 0.9997691 0.9518624
$requested_coverage
[1] 0.95
par(mfrow = c(3,2))
snps1 = colnames(X)[cs$cs$L1]
colors <- ifelse(rownames(gwas) %in% snps1, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.5, pch = 20, main = "CS 1")
snps2 = colnames(X)[cs$cs$L2]
colors <- ifelse(rownames(gwas) %in% snps2, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.5, pch = 20, main = "CS 2")
snps3 = colnames(X)[cs$cs$L3]
colors <- ifelse(rownames(gwas) %in% snps3, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.5, pch = 20, main = "CS 3")
snps5 = colnames(X)[cs$cs$L5]
colors <- ifelse(rownames(gwas) %in% snps5, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.5, pch = 20, main = "CS 5")
snps6 = colnames(X)[cs$cs$L6]
colors <- ifelse(rownames(gwas) %in% snps6, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.5, pch = 20, main = "CS 6")
snps7 = colnames(X)[cs$cs$L7]
colors <- ifelse(rownames(gwas) %in% snps7, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.5, pch = 20, main = "CS 7")
Version | Author | Date |
---|---|---|
00ae2c6 | yunqiyang0215 | 2024-06-28 |
cbind(gwas[rownames(gwas) %in% snps1, ], pip[sort(cs$cs$L1)])
MAF missing.rate p.value.spa p.value.norm Stat Var
rs962992_C 0.4233676 0 4.972442e-36 4.602638e-36 -1561.201 15503.66
rs962993_T 0.4233362 0 4.244034e-36 3.926629e-36 -1562.794 15504.17
rs1775553_T 0.4231244 0 5.990803e-36 5.546556e-36 -1559.401 15504.49
rs1775554_C 0.4232281 0 7.134297e-36 6.609131e-36 -1557.634 15503.81
rs1775555_C 0.4234788 0 7.750566e-36 7.183546e-36 -1557.319 15513.96
rs1663687_A 0.4231007 0 8.284016e-36 7.675699e-36 -1556.507 15510.86
rs1663680_C 0.4234260 0 8.028930e-36 7.441096e-36 -1557.934 15533.18
rs1031163_T 0.4231330 0 7.225009e-36 6.691733e-36 -1558.794 15529.36
rs1444782_A 0.4233832 0 1.026801e-35 9.522526e-36 -1555.862 15540.63
rs2197415_G 0.4226570 0 2.467360e-36 2.277027e-36 -1566.524 15471.91
z
rs962992_C -12.53839 0.09949565
rs962993_T -12.55097 0.11098298
rs1775553_T -12.52359 0.08463862
rs1775554_C -12.50968 0.07540126
rs1775555_C -12.50306 0.07407266
rs1663687_A -12.49779 0.07108740
rs1663680_C -12.50026 0.07564261
rs1031163_T -12.50869 0.07989495
rs1444782_A -12.48063 0.06846180
rs2197415_G -12.59404 0.23404207
cbind(gwas[rownames(gwas) %in% snps2, ], pip[sort(cs$cs$L2)])
MAF missing.rate p.value.spa p.value.norm Stat
rs11255890_A 0.3814107 0 3.749630e-06 3.747194e-06 563.2263
rs11255891_C 0.3811078 0 3.538737e-06 3.536402e-06 564.8737
rs7923068_A 0.3763112 0 6.214948e-06 6.211267e-06 549.0645
rs7087891_T 0.3818541 0 6.440784e-06 6.437136e-06 551.5516
rs7079263_T 0.3818331 0 7.987898e-06 7.983613e-06 546.0822
rs7090156_A 0.3819658 0 8.062806e-06 8.058492e-06 546.2313
rs10795674_T 0.3818882 0 7.872046e-06 7.867806e-06 546.8361
rs4749820_A 0.3819934 0 7.467303e-06 7.463229e-06 548.4964
rs10795677_C 0.3820472 0 7.206742e-06 7.202777e-06 549.6670
rs3928823_A 0.3816941 0 5.804970e-06 5.801590e-06 555.2804
rs11255912_A 0.3818426 0 5.072942e-06 5.069891e-06 558.8195
rs9665552_C 0.3821648 0 6.404849e-06 6.401220e-06 553.0131
rs9665567_T 0.3820250 0 6.477949e-06 6.474288e-06 552.7773
rs11255914_G 0.3820245 0 6.537510e-06 6.533823e-06 552.5458
rs10795678_T 0.3821332 0 6.370477e-06 6.366862e-06 553.2126
rs2027105_T 0.3820411 0 6.512476e-06 6.508800e-06 552.7926
rs10905464_A 0.3820435 0 6.505651e-06 6.501978e-06 552.8488
rs1556593_A 0.3820064 0 6.505568e-06 6.501895e-06 552.9813
rs7902526_G 0.3821339 0 7.090815e-06 7.086899e-06 550.8873
rs2986300_T 0.3821073 0 7.131334e-06 7.127400e-06 550.7870
rs169693_T 0.3818606 0 7.205248e-06 7.201278e-06 549.9620
rs401305_G 0.3820712 0 6.958835e-06 6.954971e-06 551.3828
rs290356_G 0.3820713 0 7.061460e-06 7.057554e-06 550.9938
rs2483937_G 0.3816637 0 7.836184e-06 7.831953e-06 547.9434
rs2483936_A 0.3816479 0 7.570474e-06 7.566350e-06 548.8293
rs2244336_C 0.3816293 0 7.777904e-06 7.773695e-06 547.9782
rs7068268_T 0.3826083 0 8.222822e-06 8.218454e-06 545.9362
rs12769121_G 0.3825829 0 7.481953e-06 7.477879e-06 548.2823
rs2025758_C 0.4570126 0 5.477560e-14 5.455417e-14 -941.3337
rs11255938_T 0.4549757 0 8.176240e-14 8.143698e-14 -934.2983
Var z
rs11255890_A 14830.47 4.624933 0.004672291
rs11255891_C 14840.33 4.636919 0.004893552
rs7923068_A 14762.13 4.519067 0.002786895
rs7087891_T 14946.20 4.511498 0.002822863
rs7079263_T 14953.81 4.465623 0.002268905
rs7090156_A 14975.39 4.463624 0.002266996
rs10795674_T 14974.15 4.468750 0.002303589
rs4749820_A 14989.45 4.480031 0.002472998
rs10795677_C 15002.71 4.487607 0.002536395
rs3928823_A 15002.33 4.533494 0.003021933
rs11255912_A 15005.70 4.561875 0.003468309
rs9665552_C 15017.61 4.512685 0.002831367
rs9665567_T 15020.83 4.510278 0.002844658
rs11255914_G 15021.18 4.508335 0.002815488
rs10795678_T 15020.85 4.513825 0.002890039
rs2027105_T 15029.17 4.509150 0.002827371
rs10905464_A 15030.75 4.509372 0.002830226
rs1556593_A 15037.94 4.509375 0.002812388
rs7902526_G 15046.22 4.491062 0.002608556
rs2986300_T 15048.88 4.489848 0.002283002
rs169693_T 15018.52 4.487651 0.002319646
rs401305_G 15046.49 4.495062 0.002340193
rs290356_G 15046.12 4.491945 0.002306369
rs2483937_G 15028.28 4.469727 0.002215504
rs2483936_A 15027.30 4.477101 0.002294813
rs2244336_C 15019.46 4.471324 0.002235058
rs7068268_T 14987.47 4.459413 0.002217577
rs12769121_G 14980.54 4.479612 0.002437201
rs2025758_C 15667.16 -7.520531 0.525384811
rs11255938_T 15651.83 -7.467977 0.357436300
cbind(gwas[rownames(gwas) %in% snps3, ], pip[sort(cs$cs$L3)])
MAF missing.rate p.value.spa p.value.norm Stat
rs186856025_T 0.1076229 0 6.037658e-25 2.694409e-25 -809.3564
rs144536148_G 0.1076069 0 7.225399e-25 3.244956e-25 -807.9486
rs12413578_T 0.1040860 0 4.269344e-26 1.669032e-26 -819.0107
Var z
rs186856025_T 6065.624 -10.39207 0.1934556
rs144536148_G 6065.237 -10.37433 0.1697711
rs12413578_T 5909.462 -10.65407 0.6370307
cbind(gwas[rownames(gwas) %in% snps5, ], pip[sort(cs$cs$L5)])
MAF missing.rate p.value.spa p.value.norm Stat
rs72782675_T 0.01139900 0 6.101269e-11 3.132679e-11 -174.1911
rs11256010_C 0.01180942 0 1.709305e-10 9.657797e-11 -172.0632
Var z
rs72782675_T 688.1613 -6.640195 0.7544745
rs11256010_C 706.7571 -6.472213 0.2456690
cbind(gwas[rownames(gwas) %in% snps6, ], pip[sort(cs$cs$L6)])
MAF missing.rate p.value.spa p.value.norm Stat Var
rs10905360_T 0.4582294 0 3.372720e-08 3.369323e-08 693.0571 15757.63
rs1361152_T 0.4555337 0 8.386657e-08 8.379190e-08 672.4307 15745.82
rs10905361_T 0.4555329 0 8.692650e-08 8.684954e-08 671.9820 15762.92
rs11255685_G 0.3091178 0 4.595135e-07 4.586948e-07 587.9150 13591.90
rs11255686_C 0.4561533 0 7.598315e-08 7.591467e-08 675.0231 15762.51
rs11255687_T 0.3094110 0 5.264154e-07 5.255075e-07 584.6758 13582.64
rs2388715_A 0.4032956 0 5.973238e-08 5.965609e-08 669.8155 15273.52
rs1572597_G 0.4048370 0 1.092954e-07 1.091706e-07 656.0356 15259.55
rs10905362_C 0.4035023 0 7.419131e-08 7.410009e-08 665.3488 15289.15
rs10905363_A 0.4010923 0 1.555422e-07 1.553714e-07 647.9115 15253.23
rs10905364_G 0.4035100 0 7.532316e-08 7.523077e-08 665.0269 15289.85
rs10905365_G 0.4035108 0 7.591432e-08 7.582135e-08 664.8256 15288.60
rs7082651_C 0.4035309 0 7.047604e-08 7.038864e-08 666.4066 15285.25
rs7082798_C 0.4035165 0 7.282078e-08 7.273095e-08 665.6286 15282.94
rs7082816_A 0.4035296 0 7.438961e-08 7.429818e-08 665.1285 15281.76
rs7082946_C 0.3951242 0 6.739997e-08 6.731047e-08 663.2095 15093.94
rs1338057_A 0.4035502 0 8.414118e-08 8.403993e-08 661.7569 15252.95
rs1338058_C 0.4035186 0 7.989791e-08 7.980089e-08 662.8972 15252.31
rs6602301_T 0.4033038 0 8.010373e-08 8.000636e-08 662.5799 15240.34
rs7084475_G 0.4031563 0 9.161644e-08 9.150748e-08 659.4124 15232.52
rs7088182_A 0.4032129 0 7.052657e-08 7.043891e-08 665.1473 15228.27
rs7100949_T 0.4033142 0 8.016838e-08 8.007094e-08 662.3217 15229.30
rs7100961_T 0.3110061 0 5.035850e-07 5.027192e-07 585.0123 13552.23
z
rs10905360_T 5.521075 0.04873610
rs1361152_T 5.358767 0.01936750
rs10905361_T 5.352287 0.01861149
rs11255685_G 5.042831 0.01173543
rs11255686_C 5.376578 0.02099712
rs11255687_T 5.016758 0.01037761
rs2388715_A 5.419829 0.06572784
rs1572597_G 5.310757 0.03829371
rs10905362_C 5.380935 0.05444661
rs10905363_A 5.246078 0.02494528
rs10905364_G 5.378208 0.05371247
rs10905365_G 5.376800 0.05328616
rs7082651_C 5.390176 0.05716896
rs7082798_C 5.384291 0.05530267
rs7082816_A 5.380454 0.05430836
rs7082946_C 5.398206 0.06285292
rs1338057_A 5.358233 0.04768706
rs1338058_C 5.367578 0.05006357
rs6602301_T 5.367114 0.05064724
rs7084475_G 5.342828 0.04489357
rs7088182_A 5.390048 0.05739413
rs7100949_T 5.366969 0.05050511
rs7100961_T 5.025272 0.01129927
cbind(gwas[rownames(gwas) %in% snps7, ], pip[sort(cs$cs$L7)])
MAF missing.rate p.value.spa p.value.norm Stat
rs11256016_A 0.05104932 0 7.631291e-19 3.347436e-19 487.8163
rs17406680_C 0.05256578 0 2.022166e-16 1.177382e-16 466.0854
Var z
rs11256016_A 2966.354 8.956633 0.8606128
rs17406680_C 3164.512 8.285374 0.1198051
rm(res, gwas, X, fit)
region = "chr10_6600001_12200000"
res = readRDS(paste0("/Users/nicholeyang/Downloads/survivalsusie/result/asthma_self_report/result/coa/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/Users/nicholeyang/downloads/survivalsusie/result/gwas_surv/coa_gwas_", region, ".rds"))
fit = res[[1]]
X = res[[2]]
pip <- logisticsusie:::get_pip(fit$alpha)
effect_estimate <- colSums(fit$alpha * fit$mu)
pip.sorted = sort(pip, decreasing = TRUE)
class(fit) = "susie"
cs <- susie_get_cs(fit, X)
cs
$cs
$cs$L3
[1] 2435 2440 2453
$cs$L1
[1] 2441 2451 2456 2463 2464 2468 2492 2495 2496 2499 2503 2505 2506 2508 2510
[16] 2511
$purity
min.abs.corr mean.abs.corr median.abs.corr
L3 0.9795657 0.9863213 0.9797085
L1 0.7377178 0.9345094 0.9879257
$cs_index
[1] 3 1
$coverage
[1] 0.9514251 0.9569219
$requested_coverage
[1] 0.95
par(mfrow = c(1,2))
snps1 = colnames(X)[cs$cs$L1]
colors <- ifelse(rownames(gwas) %in% snps1, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.5, pch = 20, main = "CS 1")
snps3 = colnames(X)[cs$cs$L3]
colors <- ifelse(rownames(gwas) %in% snps3, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.5, pch = 20, main = "CS 3")
cbind(gwas[rownames(gwas) %in% snps1, ], pip[sort(cs$cs$L1)])
MAF missing.rate p.value.spa p.value.norm Stat Var
rs11256017_C 0.1837118 0 1.337296e-12 1.052048e-12 348.2145 2389.486
rs2589561_G 0.1872850 0 9.694489e-13 7.621054e-13 353.1241 2427.072
rs2440781_G 0.1873717 0 1.880753e-12 1.504166e-12 349.0552 2434.699
rs1775550_A 0.1873137 0 1.433555e-12 1.138647e-12 351.1239 2437.038
rs1775551_A 0.1873124 0 1.444459e-12 1.147529e-12 351.0840 2437.219
rs2797288_A 0.1873133 0 1.442891e-12 1.146253e-12 351.1023 2437.367
rs957349_A 0.1881942 0 6.511253e-13 5.073921e-13 357.7469 2452.900
rs2589559_T 0.1883260 0 1.212991e-12 9.611524e-13 353.7164 2457.004
rs6602349_C 0.1878566 0 1.878573e-12 1.503633e-12 350.2173 2450.904
rs2589563_T 0.1878786 0 2.036862e-12 1.633785e-12 349.5877 2450.073
rs725861_G 0.1881653 0 7.211946e-13 5.635573e-13 356.2813 2442.494
rs1444788_C 0.1879988 0 5.221188e-13 4.042646e-13 358.1762 2437.942
rs1444789_C 0.1870411 0 6.839275e-13 5.323685e-13 354.6602 2415.123
rs1612986_C 0.1861778 0 2.245410e-12 1.798175e-12 345.1775 2397.688
rs1342773_A 0.2601550 0 3.385556e-09 3.244381e-09 327.3984 3059.821
rs1663693_C 0.2586433 0 6.739592e-09 6.485079e-09 320.6899 3053.194
z
rs11256017_C 7.123520 0.01375562
rs2589561_G 7.167804 0.03072167
rs2440781_G 7.074105 0.01825102
rs1775550_A 7.112615 0.02249372
rs1775551_A 7.111543 0.02235941
rs2797288_A 7.111696 0.02239189
rs957349_A 7.223305 0.04098528
rs2589559_T 7.135958 0.02449188
rs6602349_C 7.074154 0.01762487
rs2589563_T 7.062632 0.01647746
rs725861_G 7.209021 0.03769072
rs1444788_C 7.254126 0.04783467
rs1444789_C 7.216770 0.03992134
rs1612986_C 7.049302 0.01678766
rs1342773_A 5.918729 0.40727323
rs1663693_C 5.803743 0.18945975
cbind(gwas[rownames(gwas) %in% snps3, ], pip[sort(cs$cs$L3)])
MAF missing.rate p.value.spa p.value.norm Stat
rs186856025_T 0.1078996 0 1.769228e-09 1.456165e-09 -236.6775
rs144536148_G 0.1078832 0 1.879567e-09 1.549779e-09 -236.2768
rs12413578_T 0.1043563 0 5.606906e-10 4.400628e-10 -240.9523
Var z
rs186856025_T 1530.826 -6.049145 0.2570423
rs144536148_G 1530.727 -6.039098 0.2398662
rs12413578_T 1491.477 -6.239112 0.5045465
rm(res, gwas, X, fit)
region = "chr10_6600001_12200000"
res = readRDS(paste0("/Users/nicholeyang/Downloads/survivalsusie/result/asthma_self_report/result/aoa/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/Users/nicholeyang/downloads/survivalsusie/result/gwas_surv/aoa_gwas_", region, ".rds"))
fit = res[[1]]
X = res[[2]]
pip <- logisticsusie:::get_pip(fit$alpha)
effect_estimate <- colSums(fit$alpha * fit$mu)
pip.sorted = sort(pip, decreasing = TRUE)
class(fit) = "susie"
cs <- susie_get_cs(fit, X)
cs
$cs
$cs$L1
[1] 2434 2465 2467 2472 2473 2475 2477 2482 2483 2487 2501
$purity
min.abs.corr mean.abs.corr median.abs.corr
L1 0.9793508 0.9954759 0.998709
$cs_index
[1] 1
$coverage
[1] 0.9999172
$requested_coverage
[1] 0.95
snps1 = colnames(X)[cs$cs$L1]
colors <- ifelse(rownames(gwas) %in% snps1, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.5, pch = 20, main = "CS 1")
cbind(gwas[rownames(gwas) %in% snps1, ], pip[sort(cs$cs$L1)])
MAF missing.rate p.value.spa p.value.norm Stat
rs61840192_A 0.4326324 0 1.098630e-17 1.074327e-17 -810.1496
rs962992_C 0.4247181 0 1.585947e-17 1.548839e-17 -810.6104
rs962993_T 0.4246893 0 1.564940e-17 1.528280e-17 -810.7740
rs1775553_T 0.4244705 0 1.609703e-17 1.571999e-17 -810.4824
rs1775554_C 0.4245711 0 1.394592e-17 1.361652e-17 -812.0424
rs1775555_C 0.4248292 0 2.163014e-17 2.113492e-17 -807.4531
rs1663687_A 0.4244477 0 2.412625e-17 2.357580e-17 -806.1634
rs1663680_C 0.4247732 0 1.892220e-17 1.848459e-17 -809.4286
rs1031163_T 0.4244853 0 2.595928e-17 2.536966e-17 -805.8328
rs1444782_A 0.4247341 0 2.825069e-17 2.761459e-17 -805.1833
rs2197415_G 0.4240186 0 1.513540e-17 1.477702e-17 -810.3378
Var z
rs61840192_A 8945.527 -8.565688 0.15046767
rs962992_C 9044.709 -8.523439 0.09653206
rs962993_T 9045.076 -8.524986 0.09851880
rs1775553_T 9045.500 -8.521721 0.09221806
rs1775554_C 9045.044 -8.538339 0.10550927
rs1775555_C 9050.808 -8.487379 0.07015105
rs1663687_A 9049.011 -8.474664 0.06368794
rs1663680_C 9061.887 -8.502942 0.08279174
rs1031163_T 9059.844 -8.466123 0.05935369
rs1444782_A 9066.408 -8.456236 0.05786962
rs2197415_G 9027.097 -8.528881 0.12808201
rm(res, gwas, X, fit)
COA: pval = 1e-40, AOA no significant signals.
region = "chr1_150600001_155100000"
res = readRDS(paste0("/Users/nicholeyang/Downloads/survivalsusie/result/asthma_self_report/result/all/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/Users/nicholeyang/downloads/survivalsusie/result/gwas_surv/all_gwas_", region, ".rds"))
fit = res[[1]]
X = res[[2]]
print(res[[3]])
user system elapsed
184006.62 58608.10 26540.03
pip <- logisticsusie:::get_pip(fit$alpha)
effect_estimate <- colSums(fit$alpha * fit$mu)
pip.sorted = sort(pip, decreasing = TRUE)
pip.sorted[1:10]
[1] 0.99999963 0.99948127 0.07271724 0.02383702 0.01798914 0.01246631
[7] 0.01168878 0.01120367 0.01083357 0.01072128
class(fit) = "susie"
cs <- susie_get_cs(fit, X)
cs
$cs
$cs$L1
[1] 1501
$cs$L2
[1] 1951
$purity
min.abs.corr mean.abs.corr median.abs.corr
L1 1 1 1
L2 1 1 1
$cs_index
[1] 1 2
$coverage
[1] 0.9994803 0.9999996
$requested_coverage
[1] 0.95
par(mfrow = c(1,2))
snps1 = colnames(X)[cs$cs$L1]
colors <- ifelse(rownames(gwas) %in% snps1, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.5, pch = 20, main = "CS 1")
snps2 = colnames(X)[cs$cs$L2]
colors <- ifelse(rownames(gwas) %in% snps2, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.5, pch = 20, main = "CS 2")
Version | Author | Date |
---|---|---|
00ae2c6 | yunqiyang0215 | 2024-06-28 |
cbind(gwas[rownames(gwas) %in% snps1, ], pip[sort(cs$cs$L1)])
[,1] [,2]
MAF 4.788278e-02 0.9994813
missing.rate 0.000000e+00 0.9994813
p.value.spa 4.503327e-19 0.9994813
p.value.norm 1.822049e-19 0.9994813
Stat 4.864129e+02 0.9994813
Var 2.905775e+03 0.9994813
z 9.023481e+00 0.9994813
cbind(gwas[rownames(gwas) %in% snps2, ], pip[sort(cs$cs$L2)])
[,1] [,2]
MAF 2.309783e-02 0.9999996
missing.rate 0.000000e+00 0.9999996
p.value.spa 8.920365e-16 0.9999996
p.value.norm 3.297129e-16 0.9999996
Stat 2.918389e+02 0.9999996
Var 1.278500e+03 0.9999996
z 8.161930e+00 0.9999996
rm(res, gwas, X, fit)
region = "chr1_150600001_155100000"
res = readRDS(paste0("/Users/nicholeyang/Downloads/survivalsusie/result/asthma_self_report/result/coa/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/Users/nicholeyang/downloads/survivalsusie/result/gwas_surv/coa_gwas_", region, ".rds"))
fit = res[[1]]
X = res[[2]]
pip <- logisticsusie:::get_pip(fit$alpha)
effect_estimate <- colSums(fit$alpha * fit$mu)
pip.sorted = sort(pip, decreasing = TRUE)
class(fit) = "susie"
cs <- susie_get_cs(fit, X)
cs
$cs
$cs$L1
[1] 1951
$cs$L2
[1] 1333 1501
$purity
min.abs.corr mean.abs.corr median.abs.corr
L1 1.0000000 1.0000000 1.0000000
L2 0.8495995 0.8495995 0.8495995
$cs_index
[1] 1 2
$coverage
[1] 1.00000 0.99488
$requested_coverage
[1] 0.95
par(mfrow = c(1,2))
snps1 = colnames(X)[cs$cs$L1]
colors <- ifelse(rownames(gwas) %in% snps1, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.5, pch = 20, main = "CS 1")
snps2 = colnames(X)[cs$cs$L2]
colors <- ifelse(rownames(gwas) %in% snps2, "red", "black")
plot(-log10(gwas[, "p.value.spa"]), col = colors, xlab = "SNP", ylab = "-log10(p-value)", cex = 0.5, pch = 20, main = "CS 2")
cbind(gwas[rownames(gwas) %in% snps1, ], pip[sort(cs$cs$L1)])
[,1] [,2]
MAF 2.310334e-02 1
missing.rate 0.000000e+00 1
p.value.spa 1.947075e-46 1
p.value.norm 5.204430e-56 1
Stat 2.829046e+02 1
Var 3.219235e+02 1
z 1.576753e+01 1
cbind(gwas[rownames(gwas) %in% snps2, ], pip[sort(cs$cs$L2)])
MAF missing.rate p.value.spa p.value.norm Stat
rs12122629_C 0.04292273 0 1.018712e-32 1.577322e-36 320.0001
rs12123821_T 0.04777014 0 1.354423e-33 2.371638e-37 345.1886
Var z
rs12122629_C 642.6526 12.62298 0.05710693
rs12123821_T 730.5380 12.77130 0.94018856
rm(res, gwas, X, fit)
region = "chr1_150600001_155100000"
res = readRDS(paste0("/Users/nicholeyang/Downloads/survivalsusie/result/asthma_self_report/result/aoa/fit.susie.", region, ".rds"))
gwas = readRDS(paste0("/Users/nicholeyang/downloads/survivalsusie/result/gwas_surv/aoa_gwas_", region, ".rds"))
fit = res[[1]]
X = res[[2]]
pip <- logisticsusie:::get_pip(fit$alpha)
effect_estimate <- colSums(fit$alpha * fit$mu)
pip.sorted = sort(pip, decreasing = TRUE)
class(fit) = "susie"
cs <- susie_get_cs(fit, X)
cs
$cs
NULL
$coverage
NULL
$requested_coverage
[1] 0.95
sessionInfo()
R version 4.1.1 (2021-08-10)
Platform: x86_64-apple-darwin20.6.0 (64-bit)
Running under: macOS Monterey 12.0.1
Matrix products: default
BLAS: /usr/local/Cellar/openblas/0.3.18/lib/libopenblasp-r0.3.18.dylib
LAPACK: /usr/local/Cellar/r/4.1.1_1/lib/R/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] logisticsusie_0.0.0.9004 testthat_3.1.0 susieR_0.12.35
[4] survival_3.2-11 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] Rcpp_1.0.8.3 lattice_0.20-44 prettyunits_1.1.1 ps_1.6.0
[5] rprojroot_2.0.2 digest_0.6.28 utf8_1.2.2 R6_2.5.1
[9] plyr_1.8.6 RcppZiggurat_0.1.6 evaluate_0.14 highr_0.9
[13] ggplot2_3.4.3 pillar_1.9.0 rlang_1.1.1 rstudioapi_0.13
[17] irlba_2.3.5 whisker_0.4 callr_3.7.3 jquerylib_0.1.4
[21] Matrix_1.5-3 rmarkdown_2.11 desc_1.4.0 devtools_2.4.2
[25] splines_4.1.1 stringr_1.4.0 munsell_0.5.0 mixsqp_0.3-43
[29] compiler_4.1.1 httpuv_1.6.3 xfun_0.27 pkgconfig_2.0.3
[33] pkgbuild_1.2.0 htmltools_0.5.5 tidyselect_1.2.0 tibble_3.1.5
[37] matrixStats_0.63.0 reshape_0.8.9 fansi_0.5.0 crayon_1.4.1
[41] dplyr_1.0.7 withr_2.5.0 later_1.3.0 grid_4.1.1
[45] jsonlite_1.7.2 gtable_0.3.0 lifecycle_1.0.3 git2r_0.28.0
[49] magrittr_2.0.1 scales_1.2.1 Rfast_2.0.6 cli_3.6.1
[53] stringi_1.7.5 cachem_1.0.6 fs_1.5.0 promises_1.2.0.1
[57] remotes_2.4.2 bslib_0.4.1 ellipsis_0.3.2 generics_0.1.2
[61] vctrs_0.6.3 tools_4.1.1 glue_1.4.2 purrr_0.3.4
[65] parallel_4.1.1 processx_3.8.1 pkgload_1.2.3 fastmap_1.1.0
[69] yaml_2.2.1 colorspace_2.0-2 sessioninfo_1.1.1 memoise_2.0.1
[73] knitr_1.36 usethis_2.1.3 sass_0.4.4