Last updated: 2020-08-05
Checks: 6 1
Knit directory: gene_level_fine_mapping/
This reproducible R Markdown analysis was created with workflowr (version 1.6.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200622)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.
absolute | relative |
---|---|
/Users/nicholeyang/Desktop/gene_level_fine_mapping/data/hic_eqtl.RData | data/hic_eqtl.RData |
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version e6a63b8. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Untracked files:
Untracked: analysis/add_hic_feature.Rmd
Untracked: analysis/train_add_hic.RData
Untracked: data/hic_eqtl.RData
Untracked: data/train_add_hic.RData
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/hic_raw.Rmd
) and HTML (docs/hic_raw.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | e6a63b8 | yunqiyang0215 | 2020-08-05 | wflow_publish(“analysis/hic_raw.Rmd”) |
This file is to merge the HiC cutoff5.txt file with the eqtl file.
HiC = read.delim2('/Users/nicholeyang/Desktop/Rotation2/data/phic/PCHiC_peak_matrix_cutoff5.txt',
header = TRUE, sep="\t", quote = '')
head(HiC)
baitChr baitStart baitEnd baitID baitName oeChr oeStart
1 1 831895 848168 218 RP11-54O7.16;RP11-54O7.1 1 850619
2 1 831895 848168 218 RP11-54O7.16;RP11-54O7.1 1 874082
3 1 831895 848168 218 RP11-54O7.16;RP11-54O7.1 1 889424
4 1 831895 848168 218 RP11-54O7.16;RP11-54O7.1 1 903641
5 1 831895 848168 218 RP11-54O7.16;RP11-54O7.1 1 1206874
6 1 831895 848168 218 RP11-54O7.16;RP11-54O7.1 1 1239426
oeEnd oeID oeName dist
1 874081 220 AL645608.1;RP11-54O7.3;SAMD11 22319
2 876091 221 . 35055
3 903640 223 KLHL17;NOC2L;PLEKHN1 56501
4 927394 224 C1orf170;PLEKHN1 75486
5 1212438 254 RP5-902P8.10;UBE2J2 369625
6 1278099 257 ACAP3;CPSF3L;GLTPD1;PUSL1;RP5-890O3.9;TAS1R3 418731
Mon Mac0 Mac1 Mac2
1 25.5465679105014 23.1552423883082 37.5487280828996 34.2516228390872
2 1.93228468639624 2.56439166855171 3.35832960953219 5.71781390625809
3 4.92356508877905 4.10863780276095 7.95191424258896 6.67100364028254
4 5.05024811682171 4.46056127181517 7.55274568483025 5.76434097597794
5 3.95344923709904 3.05342972692307 5.9266242722129 4.150801828427
6 0.0609499671511617 2.05386132479862 0.618138347628004 0.913792765770951
Neu MK EP Ery
1 28.2293866333124 25.4329063090307 36.9483228692508 30.4394201689412
2 0.610967942588545 1.58881606916046 3.4487280264009 1.8719919279133
3 1.17403563535694 4.10809950944708 5.5704135517231 3.20890617277731
4 1.38086678794133 3.26110508356071 5.31446634983579 4.7459001438327
5 0.705195645656159 1.92373630753447 4.26918359263104 1.51009840710612
6 1.62371231175963 0.0954144429114292 5.31410964122625 2.40994217190278
FoeT nCD4 tCD4 aCD4
1 13.4832147246969 11.8032695872144 26.7897908943447 11.2517812208312
2 0.887231881369446 0.459330395938111 1.95896718272313 0.459132392236852
3 1.9950819605042 2.80478364273435 5.39252321200808 2.57999302089654
4 2.12365103441838 3.18449816361427 4.80853619861617 3.61682722105978
5 0.728922297712605 2.30806186405942 2.47644450627396 3.53054817303909
6 0.972473318644208 2.07557541736959 1.63463813746841 2.64461892923435
naCD4 nCD8 tCD8 nB
1 13.0243895499638 20.7260360866038 20.4969874759968 14.1596546965918
2 0.808471646512836 0.985252844172257 1.44004824617697 0.399504574732776
3 4.1352263052192 3.69829715449806 3.03941508666268 1.30051276658696
4 2.56785725673803 8.14891311290246 5.26392207249727 2.85027486343664
5 4.26835821053397 3.59765758511374 1.96913723097127 2.16256176269305
6 1.31022047951012 0.26139793916709 1.07865712506174 0.0908178611310335
tB clusterID clusterPostProb
1 14.8452299904824 19 0.995
2 0.892454696469067 33 0.979
3 2.79496716119577 32 0.973
4 4.66582085120164 21 0.505
5 3.60529888022249 32 0.828
6 1.93304679521667 34 0.312
dim(HiC)[1]
[1] 728838
snps = read.csv("/Users/nicholeyang/Desktop/Rotation2/data/hglft_genome_38to19.bed", header = FALSE)
snp38 = read.csv('/Users/nicholeyang/Desktop/Rotation2/data/snps.txt', header = FALSE)
x = strsplit(as.character(snps$V1), '-')
x2 = unlist(lapply(x, function(y) y[1]))
snp_info = strsplit(x2, ':')
chr = unlist(lapply(snp_info, function(x) x[1]))
start = unlist(lapply(snp_info, function(x) x[2]))
dat_snp = data.frame(cbind(chr, start, as.character(snp38$V1)))
colnames(dat_snp) = c('chr', 'start', 'loc_38map')
head(dat_snp)
chr start loc_38map
1 chr1 100643730 chr1:100178174-100178174
2 chr1 101361178 chr1:100895622-100895622
3 chr1 10271688 chr1:10211630-10211630
4 chr1 104097685 chr1:103555063-103555063
5 chr1 108588372 chr1:108045750-108045750
6 chr1 108742123 chr1:108199501-108199501
dat_snp$chr = gsub('\\D','', dat_snp$chr)
dat_snp$start = as.numeric(as.character(dat_snp$start))
index_list = c()
index = which((HiC$oeChr == dat_snp$chr[1]) & (HiC$oeStart < dat_snp$start[1]) & (HiC$oeEnd > dat_snp$start[1]))
df_snps = apply(dat_snp[1, ], 2, function(co) rep(co, each = length(index)))
index_list = c(index_list, index)
for(i in 2:dim(dat_snp)[1]){
index = which((HiC$oeChr == dat_snp$chr[i]) & (HiC$oeStart < dat_snp$start[i]) & (HiC$oeEnd > dat_snp$start[i]))
index_list = c(index_list, index)
snps = apply(dat_snp[i, ], 2, function(co) rep(co, each = length(index)))
df_snps = rbind(df_snps, snps)
}
hic_eqtl = cbind(df_snps, HiC[index_list, ])
row.names(hic_eqtl) = seq(1:dim(hic_eqtl)[1])
save(hic_eqtl, file = '/Users/nicholeyang/Desktop/gene_level_fine_mapping/data/hic_eqtl.RData')
sessionInfo()
R version 3.6.3 (2020-02-29)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Catalina 10.15.5
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] workflowr_1.6.1
loaded via a namespace (and not attached):
[1] Rcpp_1.0.4 rprojroot_1.3-2 digest_0.6.25 later_1.0.0
[5] R6_2.4.1 backports_1.1.5 git2r_0.26.1 magrittr_1.5
[9] evaluate_0.14 highr_0.8 stringi_1.4.6 rlang_0.4.5
[13] fs_1.3.2 promises_1.1.0 whisker_0.4 rmarkdown_2.1
[17] tools_3.6.3 stringr_1.4.0 glue_1.3.2 httpuv_1.5.2
[21] xfun_0.12 yaml_2.2.1 compiler_3.6.3 htmltools_0.4.0
[25] knitr_1.28