Last updated: 2020-07-21

Checks: 6 1

Knit directory: gene_level_fine_mapping/

This reproducible R Markdown analysis was created with workflowr (version 1.6.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200622) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/Users/nicholeyang/Desktop/gene_level_fine_mapping/data/dt_annov_merged.csv data/dt_annov_merged.csv
/Users/nicholeyang/Desktop/gene_level_fine_mapping/data/dt_neg_tss.RData data/dt_neg_tss.RData

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 48b7920. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rproj.user/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/create_training_set.Rmd) and HTML (docs/create_training_set.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 48b7920 yunqiyang0215 2020-07-21 wflow_publish(“analysis/create_training_set.Rmd”)

annotation result summary

annov_merged = read.csv("/Users/nicholeyang/Desktop/gene_level_fine_mapping/data/dt_annov_merged.csv")
head(annov_merged)
  X         gene_id gene_name             variant_id      pip gene_chr
1 1 ENSG00000122477    LRRC39 chr1_100178174_A_G_b38 0.633113        1
2 2 ENSG00000162694     EXTL2 chr1_100895622_C_T_b38 0.573248        1
3 3 ENSG00000054523     KIF1B  chr1_10211630_C_G_b38 0.995686        1
4 4 ENSG00000240038     AMY2B chr1_103555063_C_T_b38 0.742527        1
5 5 ENSG00000226822 LINC02785 chr1_108045750_G_A_b38 0.999808        1
6 6 ENSG00000085491  SLC25A24 chr1_108199501_C_G_b38 0.809010        1
  gene_start  gene_end gene_width tss_chr tss_position tss_dist_to_snp
1  100148449 100178273      29825       1    100178215              41
2  100872372 100895179      22808       1    100895998             376
3   10210805  10381603     170799       1     10211616              14
4  103553815 103579534      25720       1    103554700             363
5  108040263 108076020      35758      NA           NA              NA
6  108134043 108200849      66807       1    108200358             857
    snp_func       snp_refgene
1       UTR5            LRRC39
2   upstream     EXTL2;SLC30A7
3       UTR5             KIF1B
4  UTR5;UTR3       AMY2B;RNPC3
5 intergenic VAV3-AS1;SLC25A24
6   intronic          SLC25A24
                                                                                refgene_detail
1 NM_001256385:c.-9658C>T;NM_001256386:c.-9658C>T;NM_001256387:c.-9658C>T;NM_144620:c.-9658C>T
2                                                                                     dist=468
3                                                                     NM_001365952:c.-20699G>C
4                                                     NM_020978:c.-16540T>C;NM_017619:c.*42T>C
5                                                                        dist=51143;dist=88293
6                                                                                            .

summarizing by categories

categ = unique(annov_merged$snp_func)
categ
 [1] UTR5                upstream            UTR5;UTR3          
 [4] intergenic          intronic            .                  
 [7] ncRNA_intronic      exonic              ncRNA_exonic       
[10] downstream          UTR3                upstream;downstream
[13] ncRNA_splicing      splicing           
14 Levels: . downstream exonic intergenic intronic ... UTR5;UTR3
obs = rep(NA, length(categ))

for (i in 1:length(obs)){
  obs[i] = sum(annov_merged$snp_func == categ[i])
}

barplot(obs, names.arg = c(as.character(categ)), cex.names=0.7, las = 2, ylab = 'counts')

create features: UTR5/UTR3/exon/intron/upstream

  1. Remove feature categories: ‘UTR5;UTR3’, ‘ncRNA_intronic’, ‘ncRNA_exonic’, ‘upstream;downstream’ for simplification
  2. Remove ‘.’, which means no annotation found
train = annov_merged[annov_merged$snp_func != 'UTR5;UTR3' & annov_merged$snp_func != 'ncRNA_intronic' &
                        annov_merged$snp_func != 'ncRNA_exonic' & annov_merged$snp_func != 'upstream;downstream' &
                     annov_merged$snp_func != '.', ]


## some snps have 2 reference genes 
refgenes = strsplit(as.character(train$snp_refgene), ';')   
train$refgene1 = unlist(lapply(refgenes, function(x) x[1]))
train$refgene2 = unlist(lapply(refgenes, function(x) x[2]))
train$refgene2[is.na(train$refgene2)] = '999'


train2 = train[, c('gene_id','gene_name', 'variant_id', 'snp_func', 
                   'snp_refgene', 'refgene_detail', 'refgene1', 'refgene2', 'tss_dist_to_snp')]

two situations: whether associated genes = reference genes

## 1. gene-snp pairs where associated gene = reference gene
sub_train1 = train2[as.character(train2$gene_name) == train2$refgene1 | as.character(train2$gene_name) == train2$refgene2, ]


## 2. gene-snp pairs where associated gene != reference gene
sub_train2 = train2[as.character(train2$gene_name) != train2$refgene1 & 
                      as.character(train2$gene_name) != train2$refgene2, ]

create positive training set

pos1 = sub_train1
pos1$UTR5 = ifelse(pos1$snp_func == 'UTR5', 1, 0)
pos1$UTR3 = ifelse(pos1$snp_func == 'UTR3', 1, 0)
pos1$exon = ifelse(pos1$snp_func == 'exonic', 1, 0)
pos1$intron = ifelse(pos1$snp_func == 'intronic', 1, 0)
pos1$upstream = ifelse(pos1$snp_func == 'upstream', 1, 0)

pos2 = sub_train2
pos2$UTR5 = rep(0, dim(pos2)[1])
pos2$UTR3 = rep(0, dim(pos2)[1])
pos2$exon = rep(0, dim(pos2)[1])
pos2$intron = rep(0, dim(pos2)[1])
pos2$upstream = rep(0, dim(pos2)[1])

train_pos = rbind(pos1, pos2)
train_pos$y = rep(1, dim(train_pos)[1])

create negative training set: two sources

  1. In positive set, for a snp where associated gene is not the reference gene. Then reference gene-snp will be the gene-snp pair.

  2. the genes within 1mb of all the unique snps in the positive set.

## source1: e.g. geneA associated with snpA, but snpA reference to geneB. geneB-snpA is a negative gene-snp pair here

neg1 = sub_train2
neg1$UTR5 = ifelse(neg1$snp_func == 'UTR5', 1, 0)
neg1$UTR3 = ifelse(neg1$snp_func == 'UTR3', 1, 0)
neg1$exon = ifelse(neg1$snp_func == 'exonic', 1, 0)
neg1$intron = ifelse(neg1$snp_func == 'intronic', 1, 0)
neg1$upstream = ifelse(neg1$snp_func == 'upstream', 1, 0)

neg1$y = rep(0, dim(neg1)[1])
load("/Users/nicholeyang/Desktop/gene_level_fine_mapping/data/dt_neg_tss.RData")
head(dt_neg_tss)
       gene_name seqnames     start       end  width strand.x type
37846       DPM1       20  50934867  50958555  23689        - gene
120661     SCYL3        1 169849631 169894267  44637        - gene
120665     SCYL3        1 169849631 169894267  44637        - gene
120663     SCYL3        1 169849631 169894267  44637        - gene
15473   C1orf112        1 169662007 169854080 192074        + gene
15472   C1orf112        1 169662007 169854080 192074        + gene
             gene_id.x   gene_biotype                 var_id   SNP_loc
37846  ENSG00000000419 protein_coding chr20_50794732_A_G_b38  50794732
120661 ENSG00000000457 protein_coding chr1_169661963_G_A_b38 169661963
120665 ENSG00000000457 protein_coding chr1_169605649_C_T_b38 169605649
120663 ENSG00000000457 protein_coding chr1_169443797_C_T_b38 169443797
15473  ENSG00000000460 protein_coding chr1_169891332_G_A_b38 169891332
15472  ENSG00000000460 protein_coding chr1_169605649_C_T_b38 169605649
             gene_id.y chr tss_position strand.y dist_to_snp
37846  ENST00000371588   2     50958550        -      163818
120661 ENST00000367770   1    169888888        -      226925
120665 ENST00000367770   1    169888888        -      283239
120663 ENST00000367770   1    169888888        -      445091
15473  ENST00000413811   1    169795921        +       95411
15472  ENST00000496973   1    169795043        +      189394
## find the genes within 1mb for the unique snp set. 
unique_snp = unique(as.character(train2$variant_id))
indx = unlist(lapply(unique_snp, function(x) which(dt_neg_tss$var_id == x)))
neg2 = dt_neg_tss[indx, ]
## remove the gene-snp pairs already in the negative set1. 
neg2_remove_indx = c()

for (i in 1:dim(sub_train2)[1]){
  
  gene_name = sub_train2[i, ]$refgene1
  snp_id = sub_train2[i, ]$variant_id
  
  indx = which(as.character(neg2$gene_name) == as.character(gene_name) & as.character(neg2$var_id) == as.character(snp_id))
  neg2_remove_indx = c(neg2_remove_indx, indx)
}
neg2 = neg2[-neg2_remove_indx, ]
neg2$UTR5 = rep(0, dim(neg2)[1])
neg2$UTR3 = rep(0, dim(neg2)[1])
neg2$exon = rep(0, dim(neg2)[1])
neg2$intron = rep(0, dim(neg2)[1])
neg2$upstream = rep(0, dim(neg2)[1])
neg2$y = rep(0, dim(neg2)[1])
train_pos_all = train_pos[, c('gene_name', 'variant_id', "UTR5", "UTR3", "exon", 
                              "intron", "upstream", 'tss_dist_to_snp', "y")]


sub_train_neg1 = neg1[, c('snp_refgene', 'variant_id', "UTR5", "UTR3", "exon", 
                              "intron", "upstream", 'tss_dist_to_snp', "y")]

colnames(sub_train_neg1) = c('gene_name', 'variant_id', "UTR5", "UTR3", "exon", 
                              "intron", "upstream", 'tss_dist_to_snp', "y")

sub_train_neg2 = neg2[, c('gene_name', 'var_id', "UTR5", "UTR3", "exon", 
                              "intron", "upstream", 'dist_to_snp', "y")]

colnames(sub_train_neg2) = c('gene_name', 'variant_id', "UTR5", "UTR3", "exon", 
                              "intron", "upstream", 'tss_dist_to_snp', "y")


train_neg_all = rbind(sub_train_neg1, sub_train_neg2)

# save(train_pos_all, train_neg_all, file = 'training.RData')

sessionInfo()
R version 3.6.3 (2020-02-29)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Catalina 10.15.5

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] workflowr_1.6.1

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.4      rprojroot_1.3-2 digest_0.6.25   later_1.0.0    
 [5] R6_2.4.1        backports_1.1.5 git2r_0.26.1    magrittr_1.5   
 [9] evaluate_0.14   highr_0.8       stringi_1.4.6   rlang_0.4.5    
[13] fs_1.3.2        promises_1.1.0  whisker_0.4     rmarkdown_2.1  
[17] tools_3.6.3     stringr_1.4.0   glue_1.3.2      httpuv_1.5.2   
[21] xfun_0.12       yaml_2.2.1      compiler_3.6.3  htmltools_0.4.0
[25] knitr_1.28