Last updated: 2020-09-16
Checks: 6 1
Knit directory: gene_level_fine_mapping/
This reproducible R Markdown analysis was created with workflowr (version 1.6.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200622)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.
absolute | relative |
---|---|
/Users/nicholeyang/Desktop/gene_level_fine_mapping/data/train_all.RData | data/train_all.RData |
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 6bae65f. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: analysis/.RData
Ignored: analysis/.Rhistory
Untracked files:
Untracked: analysis/atac_eqtl.Rmd
Untracked: data/hic_eqtl.RData
Untracked: data/train_add_hic.RData
Untracked: data/train_all.RData
Unstaged changes:
Modified: analysis/add_hic_feature.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/assess_distal_observation.Rmd
) and HTML (docs/assess_distal_observation.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 6bae65f | yunqiyang0215 | 2020-09-16 | wflow_publish(“analysis/assess_distal_observation.Rmd”) |
html | d6daf14 | yunqiyang0215 | 2020-09-16 | Build site. |
Rmd | d7d76a2 | yunqiyang0215 | 2020-09-16 | wflow_publish(“analysis/assess_distal_observation.Rmd”) |
html | fd1c97c | yunqiyang0215 | 2020-09-16 | Build site. |
Rmd | 8858090 | yunqiyang0215 | 2020-09-16 | wflow_publish(“analysis/assess_distal_observation.Rmd”) |
html | 19966f6 | yunqiyang0215 | 2020-09-16 | Build site. |
Rmd | a6a1c0f | yunqiyang0215 | 2020-09-16 | wflow_publish(“analysis/assess_distal_observation.Rmd”) |
html | 20ce646 | yunqiyang0215 | 2020-09-16 | Build site. |
Rmd | b1e3ea3 | yunqiyang0215 | 2020-09-16 | wflow_publish(“analysis/assess_distal_observation.Rmd”) |
html | 1d0f053 | yunqiyang0215 | 2020-08-31 | Build site. |
html | a187678 | yunqiyang0215 | 2020-08-31 | Build site. |
Rmd | a494940 | yunqiyang0215 | 2020-08-31 | wflow_publish(“analysis/assess_distal_observation.Rmd”) |
html | bcf3283 | yunqiyang0215 | 2020-08-31 | Build site. |
Rmd | 50aca89 | yunqiyang0215 | 2020-08-31 | wflow_publish(“analysis/assess_distal_observation.Rmd”) |
model the distal observations, tss_dist_to_snp > 100kb
the feature weight, HIC and ATAC have no prediction power, predict all the observations to be negative.
If adding all other functional features, including exon, intron,…, that improve the classification performance. The accuracy is still not high, \(9/49\approx0.184\).
The important questions here:
(1). why we couldn’t classify distal observations well?
(2). why intron/exon(features in closer range) better than distal features?
The problem of the eQTL data? The problem of the HiC ATAC feature data?
Instead of using binary outcome y, do more exploratory analysis on PIP, to see if there’s relationship between PIP and distance.
Relax eQTL PIP threshold to include more into training data. To see if distal pairs increase or not. If not, this means that eQTL couldn’t capture distal gene-snp association or the calculation of PIP doesn’t consider distal interaction.
library(ggplot2)
library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
require(PRROC)
Loading required package: PRROC
load('/Users/nicholeyang/Desktop/gene_level_fine_mapping/data/train_all.RData')
head(train_all_sig)
gene_name snp_loc38 variant_id UTR5 UTR3 exon intron
1 A1BG chr19:57866502 chr19_57866502_T_C_b38 0 0 0 0
2 A1BG chr19:58059544 chr19_58059544_T_G_b38 0 0 0 0
3 A1BG chr19:58170494 chr19_58170494_G_T_b38 0 0 0 0
4 A1BG chr19:58228973 chr19_58228973_T_G_b38 0 0 0 0
5 A1BG chr19:58330182 chr19_58330182_C_T_b38 0 0 0 0
6 A1BG chr19:58359927 chr19_58359927_G_A_b38 0 0 0 0
upstream tss_dist_to_snp y Mon Mac0 Mac1 Mac2 Neu MK EP Ery FoeT nCD4 tCD4
1 0 481132 0 0 0 0 0 0 0 0 0 0 0 0
2 0 288090 0 0 0 0 0 0 0 0 0 0 0 0
3 0 177140 0 0 0 0 0 0 0 0 0 0 0 0
4 0 118661 0 0 0 0 0 0 0 0 0 0 0 0
5 0 17452 1 0 0 0 0 0 0 0 0 0 0 0
6 0 6428 1 0 0 0 0 0 0 0 0 0 0 0
aCD4 naCD4 nCD8 tCD8 nB tB correlation
1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0
# create unified HiC feature
hic = apply(train_all_sig[, c(11:27)], 1, sum)
train_all_sig$hic = ifelse(hic>0, 1, 0)
# ATAC data
train_all_sig$atac = ifelse(train_all_sig$correlation > 0.5, 1, 0)
# transform tss_dist_to_snp into weights
sigma = 1e5
train_all_sig$weight = exp(-train_all_sig$tss_dist_to_snp/sigma)
dat = train_all_sig[train_all_sig$tss_dist_to_snp > 1e5, ]
sum(dat$y == 1)
[1] 146
sum(dat$y == 0)
[1] 48505
set.seed(215)
n = dim(dat)[1]
indx = sample(1:n, round(2*n/3), replace = FALSE)
train = dat[indx, ]
test = dat[-indx, ]
sum(train$y == 1)
[1] 97
fit1 = glm(y ~ weight + exon + UTR5 + UTR3+ intron+ upstream, data = train, family = "binomial")
summary(fit1)
Call:
glm(formula = y ~ weight + exon + UTR5 + UTR3 + intron + upstream,
family = "binomial", data = train)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.8093 -0.0680 -0.0545 -0.0500 3.6803
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.7714 0.1884 -35.938 < 2e-16 ***
weight 4.9461 0.9517 5.197 2.02e-07 ***
exon 7.2503 1.1756 6.167 6.95e-10 ***
UTR5 5.4269 1.2719 4.267 1.98e-05 ***
UTR3 5.6461 0.8176 6.906 4.98e-12 ***
intron 5.8104 0.3403 17.072 < 2e-16 ***
upstream 5.5072 1.2500 4.406 1.05e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1321.3 on 32433 degrees of freedom
Residual deviance: 1019.5 on 32427 degrees of freedom
AIC: 1033.5
Number of Fisher Scoring iterations: 9
pred.probs=predict(fit1,test,type="response")
glm.pred = rep(0, length(pred.probs))
## all predicted to be negative
glm.pred[pred.probs>0.5]= 1
table(glm.pred, test$y)
glm.pred 0 1
0 16162 40
1 6 9
# prediction accuracy
accuracy = sum(glm.pred == test$y)/length(test$y)
accuracy
[1] 0.9971635
fg <- pred.probs[test$y == 1]
bg <- pred.probs[test$y== 0]
# ROC Curve
roc <- roc.curve(scores.class0 = fg, scores.class1 = bg, curve = T)
plot(roc)
# PR Curve
pr <- pr.curve(scores.class0 = fg, scores.class1 = bg, curve = T)
plot(pr)
fit2 = glm(y ~ weight + exon, data = train, family = "binomial")
summary(fit2)
Call:
glm(formula = y ~ weight + exon, family = "binomial", data = train)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.8546 -0.0794 -0.0596 -0.0534 3.6508
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.6632 0.1801 -36.994 < 2e-16 ***
weight 6.3711 0.8650 7.365 1.77e-13 ***
exon 6.9730 1.1844 5.887 3.93e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1321.3 on 32433 degrees of freedom
Residual deviance: 1240.8 on 32431 degrees of freedom
AIC: 1246.8
Number of Fisher Scoring iterations: 9
pred.probs=predict(fit2,test,type="response")
glm.pred = rep(0, length(pred.probs))
## all predicted to be negative
glm.pred[pred.probs>0.5]= 1
table(glm.pred, test$y)
glm.pred 0 1
0 16167 46
1 1 3
# prediction accuracy
accuracy = sum(glm.pred == test$y)/length(test$y)
accuracy
[1] 0.9971018
fg <- pred.probs[test$y == 1]
bg <- pred.probs[test$y== 0]
# ROC Curve
roc <- roc.curve(scores.class0 = fg, scores.class1 = bg, curve = T)
plot(roc)
# PR Curve
pr <- pr.curve(scores.class0 = fg, scores.class1 = bg, curve = T)
plot(pr)
fit3 = glm(y ~ weight, data = train, family = "binomial")
summary(fit3)
Call:
glm(formula = y ~ weight, family = "binomial", data = train)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.1640 -0.0808 -0.0608 -0.0546 3.6389
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.6200 0.1768 -37.433 < 2e-16 ***
weight 6.3019 0.8532 7.386 1.51e-13 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1321.3 on 32433 degrees of freedom
Residual deviance: 1271.1 on 32432 degrees of freedom
AIC: 1275.1
Number of Fisher Scoring iterations: 9
pred.probs=predict(fit3,test,type="response")
glm.pred = rep(0, length(pred.probs))
## all predicted to be negative
glm.pred[pred.probs>0.5]= 1
table(glm.pred, test$y)
glm.pred 0 1
0 16168 49
# prediction accuracy
accuracy = sum(glm.pred == test$y)/length(test$y)
accuracy
[1] 0.9969785
fg <- pred.probs[test$y == 1]
bg <- pred.probs[test$y== 0]
# ROC Curve
roc <- roc.curve(scores.class0 = fg, scores.class1 = bg, curve = T)
plot(roc)
Version | Author | Date |
---|---|---|
20ce646 | yunqiyang0215 | 2020-09-16 |
# PR Curve
pr <- pr.curve(scores.class0 = fg, scores.class1 = bg, curve = T)
plot(pr)
Version | Author | Date |
---|---|---|
20ce646 | yunqiyang0215 | 2020-09-16 |
fit4 = glm(y ~ weight + hic + atac, data = train, family = "binomial")
summary(fit4)
Call:
glm(formula = y ~ weight + hic + atac, family = "binomial", data = train)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.2994 -0.0809 -0.0591 -0.0527 3.6589
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.69306 0.18309 -36.557 < 2e-16 ***
weight 6.32761 0.86039 7.354 1.92e-13 ***
hic -0.01067 0.27603 -0.039 0.96915
atac 1.31793 0.35309 3.733 0.00019 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1321.3 on 32433 degrees of freedom
Residual deviance: 1261.1 on 32430 degrees of freedom
AIC: 1269.1
Number of Fisher Scoring iterations: 9
pred.probs=predict(fit4,test,type="response")
glm.pred = rep(0, length(pred.probs))
## all predicted to be negative
glm.pred[pred.probs>0.5]= 1
table(glm.pred, test$y)
glm.pred 0 1
0 16168 49
# prediction accuracy
accuracy = sum(glm.pred == test$y)/length(test$y)
accuracy
[1] 0.9969785
fg <- pred.probs[test$y == 1]
bg <- pred.probs[test$y== 0]
# ROC Curve
roc <- roc.curve(scores.class0 = fg, scores.class1 = bg, curve = T)
plot(roc)
Version | Author | Date |
---|---|---|
20ce646 | yunqiyang0215 | 2020-09-16 |
# PR Curve
pr <- pr.curve(scores.class0 = fg, scores.class1 = bg, curve = T)
plot(pr)
Version | Author | Date |
---|---|---|
20ce646 | yunqiyang0215 | 2020-09-16 |
## proportion of positive observations by distance
sum(dat$y == 1)/dim(dat)[1] ## distal ones
[1] 0.003000966
sum(train_all_sig$y == 1)/dim(train_all_sig)[1]
[1] 0.05779677
sessionInfo()
R version 3.6.3 (2020-02-29)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Catalina 10.15.5
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] PRROC_1.3.1 dplyr_0.8.5 ggplot2_3.3.0 workflowr_1.6.1
loaded via a namespace (and not attached):
[1] Rcpp_1.0.4 compiler_3.6.3 pillar_1.4.3 later_1.0.0
[5] git2r_0.26.1 highr_0.8 tools_3.6.3 digest_0.6.25
[9] evaluate_0.14 lifecycle_0.2.0 tibble_3.0.1 gtable_0.3.0
[13] pkgconfig_2.0.3 rlang_0.4.5 rstudioapi_0.11 yaml_2.2.1
[17] xfun_0.12 withr_2.1.2 stringr_1.4.0 knitr_1.28
[21] fs_1.3.2 vctrs_0.2.4 rprojroot_1.3-2 grid_3.6.3
[25] tidyselect_1.0.0 glue_1.3.2 R6_2.4.1 rmarkdown_2.1
[29] purrr_0.3.3 magrittr_1.5 whisker_0.4 backports_1.1.5
[33] scales_1.1.0 promises_1.1.0 htmltools_0.4.0 ellipsis_0.3.0
[37] assertthat_0.2.1 colorspace_1.4-1 httpuv_1.5.2 stringi_1.4.6
[41] munsell_0.5.0 crayon_1.3.4